

23 October 2020

Document Ref: ADL2020-0176AB Rev2

City of Onkaparinga Lot 10 Railway Road Seaford Meadows, SA, 5169

Attention: Salvador Jurado

Dear Salvador

RE: Geotechnical Stability Assessment

Witton Bluff Base Trial

1 INTRODUCTION AND SCOPE OF WORK

The City of Onkaparinga (Council) have engaged CMW Geosciences Pty Ltd (CMW) to undertake a cliff stability assessment along the Witton Bluff Base Trail (WBBT) from Christies Beach to Port Noarlunga, SA.

This report has been prepared to summarize the results of the works performed by CMW.

2 PROJECT SETTING AND BACKGROUND

CMW understand City of Onkaparinga (Council) have received state government funding to construct a 3m wide shared use path around the base of Witton Bluff as per our site visit (05/06/2020). The shared use path is referred to this report as the WBBT.

The coastal WBBT will extend around the base of the cliffs from Beach Road Christies Beach to the Esplanade/Saltfleet Street intersection at Port Noarlunga (opposite the jetty). The proposed WBBT will be a combination of a concrete or bitumen paths and an elevated boardwalk and bridge. The proposed construction of the WBBT will require upgrade of the existing seawall (designs attached) to provide long term protection of the cliffs and the new WBBT. Construction of the WBBT and upgrade of protection works shall be designed to account for coastal conditions, including significant wave action/impacts and predicted sea level rise.

Previous assessments have determined the cliff faces are actively eroding and there are potential public safety risks when using the existing pathway due to cliff failures.

3 SUPPLIED INFORMATION

The following cliff stability reference files have been provided by City of Onkaparinga to CMW;

- Final Report Witton Bluff Base Trail 250705_Connel Wagner
- WBBT Concept Design_v2 pdf
- WittonNrth_Seawall_Upgrade_Design_Report_11-0669saa-pobrp-Rev A
- Cliff Top Erosion Audit_42655715 dated 2007
- Witton Bluff_42657366_R001b 30-10-09 dated 2009
- Witton_Bluff_Port_Noarlunga_rock_armour_revetment_BU_8706_2012-105_For_Construction_Rev_0_Drawings[1]

• Detailed_Cliff_Stability_Investigations_Stage_2_Final_ReportA

4 CLIFF STABILITY RISK ASSESSMENT OBJECTIVES

Council have requested the geotechnical risk assessment shall include;

- A risk analysis to WBBT users using the proposed shared use WBBT due to soil / rock fall or landside
- Propose an alignment / elevation of the WBBT or proposed remediation works to reduce the associated risks to an acceptable level

5 SCOPE OF WORKS

Given the above objectives the following scope of works was derived by Council and undertaken by CMW. Works undertaken by CMW have included;

- Review the available information and documents provided by Council;
- Conduct an assessment of the site to identify/verify the main geotechnical risk features of Witton Bluff cliffs;
- Conduct a risk analysis to users of the proposed WBBT and discuss proposed high-level design for mitigation measures with Council's project officers to reduce the risk (if required) which may include;
 - o WBBT alignment
 - WBBT elevation
 - o structures to catch material (catch drain)
 - mechanical intervention on the cliffs.
- Provide recommendations for the location of the WBBT in accordance with the above.

6 DOCUMENTS OF REFERENCE

The proposed WBBT concepts are presented in Figure 1 and Figure 2 and provide an outline of the project. These figures are included within the figures section of this report, where:

- Figure 1 covers the current plan and sections for the proposed Christies Beach Seawall.
- Figure 2 covers the current concept plans, images, illustrations, and sections for the WBBT.

7 PREVIOUS ASSESSMENTS

7.1 Work by the Author

The author of this report has been involved in this site since 2006 to the present day. During this period the author has noted only minor changes to the cliff's geometry. This familiarity with the project setting has been used in the assessment of slope instabilities impacting upon the existing WBBT. A key report prepared by the author is:

• Witton Bluff_42657366_R001b 30-10-09 dated 2009. This assessment undertaken by the author, is a key reference to this assessment. The drawings are therefore reproduced within this report (see Drawing Site Observations Sheet 1 of 2 and 2 of 2 in Appendix A). The geotechnical Zones delineated in this report are also of relevance to this project report.

7.2 Work by Others

Significant portions of the coastline within the Onkaparinga Council area have had cliff stability investigations and assessments since 2001. Assessments have been collated according to suburbs located along the coastline. Key reports for the stability assessments covered by this report include:

• Detailed_Cliff_Stability_Investigations_Stage_2_Final_Report A: This 2007 assessment highlighted the risk of soil slumping from the crest would reach the base of the cliff. Refer to

Appendix A for extracts (plans, risk assessments and property maintenance considerations and assessments) from this report regarding this site. These extracts provide zones that have been referenced and are considered relevant to this study.

- 235717 Rev 0 Final Report Cliff Stability Review dated April 2016. This is a recent GHD report
 encompassing the greater area of the City of Onkaparinga's coastline. It is a specific slope
 stability report and is the most recent and detailed report for the area. The outcomes from this
 report are attached in Appendix B. The area of study has been assigned as Zone A in this
 report.
- Also, of note, the GHD 2016 assessment has assessed part of the area as a high risk of major landslide but a medium risk to minor landslide. Refer to Appendix B for the location and extents of this separate risk assessment to this report.

In addition to the geotechnical aspect of stability discussed above a series of reports have been prepared regarding coastal erosion studies that have been performed. These studies have been undertaken by others for Council. Other relevant studies prepared by others for Council include reports detailing future impact of sea level rise and wave action upon the cliff.

These studies are highly relevant to this project and the assessment of the longevity of the infrastructure. The details of these reports are covered in the seawall design works performed by others for this project and are not detailed in this report.

8 ASSESSMENT

It is highlighted that this slope stability risk assessment is based on the existing slope slumping, sliding or unravelling and falling/bouncing down the current cliff slope onto the WBBT. Subject to the geometry of the slope, the volume of material that reports to the bottom of the slope is dependent on the type of soils or rock that unravels, the height and lateral distances the materials travels.

This assessment does not provide details on the risk of instability and associated damage to the Esplanade or to civil structures above the cliff top (pavements, drainage, lookouts carparks etc).

This assessment aims to provide advice for the placement of the coastal WBBT out of future potential instabilities from above and below the WBBT. While it is hard to define a time frame of slope instabilities, the stability assessment has considered that sea level rise will be addressed by the seawall and therefore the resultant erosive forces on select soil units are predominantly water runoff, desiccation and gravity.

It is understood that an assessment of the rate of cliff recession has been estimated by others in recent commissions by Council. These assessments are based on photographic records and are there indicative only but they have allowed for some objective comment based on the Council's historical records of changes to the cliff slope at the site over time.

8.1 Mechanisms of Cliff Instability

The main instability mechanisms and geotechnical hazards identified in this and previous assessments are summarized from the top to the bottom of the slope as noted below. The Abbreviations of the mechanism of failure are described below in detail and referenced in Table 2 for each specific Zone of the project:

- 1. A lack of vegetation at the crest leading to surface erosion at the upper zone (EU);
- 2. Erosion Gullies (EG): caused by water flowing down soil slopes;
- 3. Circular Failures (CF): caused by gravity induced failure of soil and weak rock. This typically results in the shallow angle formation of the middle and upper parts of the slope;

- 4. Erosion of the slope between crest and base (EM): general shrink swell of the soil mass and erosive forces (wind, water, and animals) led to the transport/removal of material from the slope to the sea. This is a gradual but ongoing process slowly retreating the slope.
- 5. Erosion at base (EB): caused by wave action, leading to the undercutting of the slope, cave formation and then tensile failure of the low strength rock in the bottom half of the cliff. This typically results in subvertical slope formation in the lower parts of the slope; and
- Combined erosional forces acting upon the full height of the slope, leading to large scale slope instability (EB + CF + EG + EU + EM).

As noted above the volume of material that may reach the WBBT is dependent on the above mechanism of soil or rock failure active upon a slope. With the geometry of the slope changing along the cliff slope and vegetation providing restoring forces limiting the failure, the assessments are interrelated along with the typical erosive forces of rainfall and animal activity.

The main long-term mechanisms of cliff instability for this project site are CF and EM failures. These failure types could lead to the oversteepening of the slope immediately above the public accessways (paths, bench seats, lookouts etc). They are also the mechanisms more likely to provide larger volume of material down the slope during failure. These modes of failure are typical to most soil materials and has precursor signs of bulging of the lower slope and tension cracks at the upper surface.

While EB failure mechanisms impact on the global slope, areas with these mechanisms are also very dangerous to people. We note in the undercut cave areas a potential consequence if there was a rock fall whilst people were present is a fatality.

Audits along the cliffs have recommended various forms of treatment. Treatments could include infilling of a local gully with granular material to fencing and signage along cliff top and cliff base. We note in Zone I on the attached Drawings and Figures, areas where Council have successfully back filled wave undercut areas to limit erosion and human access to these high-risk areas. For the bulk of this project area the area affected by EB mechanism of failure has been reduced by the sea wall and backfilling of areas.

8.2 Geotechnical Zones

To assist in the assessment of the risk of slope instabilities impacting upon the coastal WBBT, Zones of similar geotechnical characteristics have been defined. The attributes of these zones are briefly listed in Table 1.

The distribution and boundaries to these geotechnical zones with reference to the current coastal WBBT are denoted / illustrated on aerial images within Figures 3a to 3g. Also included in Figures 3a to 3g are suggested deviations to the coastal WBBT.

The 2009 URS Drawings are included in Appendix A below to provide illustration of these zones and other slope instability site notes relevant to this study.

8.3 Risk Assessment

Our risk assessment has been undertaken with consideration of the AGS qualitative risk assessment to property and as per City of Onkaparinga Risk Assessment process.

This process, as documented in GHD 2016 report, is included in Appendix B for reference. Appendix B also contains the assessment of the site with respect to the AGS qualitative risk assessment given minor and major landslide event probabilities.

This study has assessed each geotechnical zone listed in Table 1. The results of the risk assessment are listed in Table 2 and are also mapped on Figure 3a to Figure 3g.

Cliff Zone	Height (m)	Slope	Hazards
A	5 to 10	1V:1H*	none
В	10 to 15	1.7V:1H^	CF, EM
C	15	1V:1.5H#	none
D1	15	1.2V:1H^	CF, EM, EG
D2	15	1.2V:1H^	CF, EM, EG
Е	20	1V:1H*	EG
F1	20	1V:1H^	CF, EM, EG
F2	20	1V:1H^	CF, EM, EG
G	25 to 30	1V:1H*	EG
H1	25 to 30	1V:1H^	CF, EM, EG
H2	25 to 30	1V:1H^	CF, EM, EG
H3	25 to 30	1V:1H^	CF, EM, EG
I	25 to 30	1V:1H~	CF, EM, EG, EB
J	20 to 25	1V:1.7H~	CF, EM, EG, EB
K	20 to 25	1V:1H*	CF, EM, EG, EB
L	<15	1V:1H*	EB, EM, EG
М	<10	irreg.	EB, EM, EG
Slope Geo	metry		
*	Cliff - uniform grade from crest to	o toe	
#	Cliff - upper shallow slope, stee	p mid slope and shallow	er lower slope
٨	Cliff - upper steep slope and a lo	wer shallow slope	
~	Cliff - shallow upper slope and a	steep lower slope	
Hazard No	tes / Slope Failure Mechanisms		
CF	circular failure in mid slope	EB	erosion at base
EM	erosion within slope	EG	erosion gullies

Table 1: Geotechnical Zone geometry and slope hazards related to mechanism of slope failure

The following is noted regarding the assignment of consequence for this project which are over and above the description in AGS slope stability assessments and Council risk assessment.

A property consequence of 3 - assumes damage to the WBBT being able to be easily repaired by excavators or replacement of fences, minor retention walls where required.

With respect to human risk a consequence of 3 – is based on the soil mass being expected to unravel whilst tumbling down the slope to the toe/WBBT resulting in less potential harm to a human. This compares to a consequence of 4 where the slumped mass containing rock is not expected to unravel to the same extent as a soil mass at the toe of the slope. In the case, the material/boulder is expected to be larger and potentially result in greater harm to a human. It is also expected that the slumping failure would occur during (or shortly after) a storm event when the exposure time of the risk to humans is expected to be significantly reduced.

Area H1 and H2 has evidence of several rocks at the base of this slope, some beyond the current fence onto the WBBT. In area H2 the rocks are small at the WBBT but at Area H1 where the WBBT is close to the toe of the slope, the rocks are predicted to be larger and therefore generate a higher risk.

Further details of remedial actions to mitigate slope instabilities impacting upon the WBBT are provided in Section 9.

	Assessment	of risk to property	and people give	en current coastal WBBT
Cliff Zone	Likelihood	Consequences	Risk	Remedial Action [^]
А	1	2	Low	none
В	3	3	High	modify WBBT
С	1	2	Low	none
D1	3	3	High	catch fence required
D2	3	2	Medium	none but fence
E	2	2	Low	none
F1	3	3	High	none but fence
F2	3	2	Med	none but fence
G	2	2	Low	none
H1	3	4	High	none but fence
H2	2	2	Low	none but fence
H3	3	2	Low	none but fence
I	2	2	Low	none
J	3	4	High	modify WBBT
К	2	2	Low	none
L	3	2	Medium	modify WBBT
М	1	2	Low	none

Table 2: City of Onkaparinga Risk assessment for Property based on AGS assessment methods

^remedial actions discussed in Section 9.

9 WBBT DESIGN CONSIDERATIONS

9.1 Discussion of risks and WBBT relocation options

A discussion on the risk assessments for the project site was undertaken with Council and CMW on the 28/7/20 during a site walk over. The aim of the discussions was understanding the interactions between Council's civil design with the CMW risk assessment for the various geotechnical zones and cliff slope geometries.

As a basis of design, the remediation options proposed by CMW would need to consider:

- An unstable volume of soil released/detached from the slope at a given height and lateral distance from the edge of the WBBT. On average a 1V:1H batter slope is considered to be representative of long-term stable conditions in the cliff slope. The assignment of unstable volumes of soil in the cliff slope to be determined by considering all material above a hypothetical 1V:1H batter slope projected from the edge of the WBBT to the height of the above pavement/kerb of the road.
- These static assessments required numerical modelling and ground models to be assigned and documented for the specific geometry of each geotechnical zone. The assessment should assess circular and non-circular failure modes of the soil/rock units and the velocity/energy of the final volume and block size to impact the toe of the slope.
- Catch fence to be designed based on the predicted impact energies from detached soil mass/landslide.
- The above advice should inform path alignment changes (distance and elevation) integrated with the catch fence design.

Given the outcomes of the above, the preferred engineering controls for the WBBT realignment discussed included:

- 1. <u>Modifying the existing slope</u>: This option included earthworks (either placement of material down the slope or removal of steep segments of the slope). The option presented safety risk for construction and the potential removal of vegetation. This option was not considered as suitable/viable for the project site and will not be discussed further.
- 2. <u>Placement of a barrier at the base of the slope:</u> given safety in design options, this would act as a catch fence, only considered required for areas where the lower portion of the cliff slope was at approximately 1V:1H. The catch fence aimed at only providing a barrier to a soil mass as it unravelled down the slope (consequence 3).
- 3. <u>Moving the WBBT laterally seaward or vertically</u>: This option was only considered required for Zone B where the cliff posed the highest risk to the public as any failure would immediately impact a person on the WBBT with the volume of material significant enough to potentially bury a person. Elevating the structure would provide additional storage volume from any potential material from a collapse to reduce the potential impact on the path. Also a cantilevered WBBT may pose as a suitable alternative for this area. Ramping up-onto and off-of the wooden/metal decking is expected to be required.

Considerate of the above discussion on site, the following Table 3 provides a breakdown of potential remediation options for each geotechnical zone.

Cliff Zone	Ass	essment of risk to proper	ty and people given current coastal path
Cilli Zone	Risk	Remedial Action	Recommended Action
А	Low	none	WBBT remains in current location
В	High	Modify path and install catch fence	WBBT to be moved, Raise WBBT upward/move seaward + Install catch fence in the ramp areas
С	Low	none	WBBT remains in current location
D1	High	install catch fence	WBBT remains in current location, install catch fence, noting drainage issues to be considered
D2	Medium	install catch fence	WBBT remains in current location. Water related erosion, drainage to be considered, install catch fence,
E	Low	none	WBBT remains in current location
F1	High	install catch fence	WBBT remains in current location, install catch fence
F2	Med	install catch fence	WBBT remains in current location but develop the WBBT on the seaward side of the WBBT, upgrade existing fence to a catch fence
G	Low	install catch fence	WBBT remains in current location, upgrade existing fence to a catch fence only where existing.
H1	High	install catch fence	WBBT remains in current location, upgrade existing fence to a catch fence
H2	Low	install catch fence	WBBT remains in current location, upgrade existing fence to a catch fence
H3	Low	install catch fence	WBBT remains in current location, upgrade existing fence to a catch fence
I	Low	none	WBBT remains in current location
J	High	modify path	Current slope should be offset by the walkway by a height equal to the lateral offset to the crest and the walkway deck.

Table 3: Current Path Remediation Recommendations

Cliff Zone	Ass	essment of risk to proper	ty and people given current coastal path
	Risk	Remedial Action	Recommended Action
K	Low	modify path	Move WBBT away from edge of shelf
L	Medium	modify path	Cut new access, variable risk in this zone.
М	Low	none	WBBT remains in current location

With respect to the civil drainage design, it was agreed that a WBBT would not be able to sustain a working horizontal subsoil drainage layer as it would be prone to being blocked by materials eroding from the cliff slope. Alternative drainage under the WBBT must be considered and integrated in the design to ensure drainage does not erode the toe of the slope.

9.2 Recommendations

It is important to note that our recommendations in Table 3 are geotechnically focused and do not consider other civil engineering aspects required for the shared user WBBT development (e.g. drainage, fencing etc..). CMW have not been provided with the geometry of all the batter slopes over the length of this project area, however Figures 3a, 3b, 3c, 3d, 3e, 3f, and 3g indicate stability risk assessments for the WBBT and note where the WBBT should be realigned as per Table 3.

Based on our assessment and prior site assessments, the area of greatest concern to the increased risk of slope instability are areas where there is a steep cliff segment immediately adjacent to the WBBT (Area B). In this area moving the WBBT seaward or raising the WBBT (or a boardwalk) is recommended.

Cliff Zone H1 present a great risk to humans if the proposed breakout area is located close to the toe of the cliff. Engineered control will be required to be constructed including a barrier design to withstand impact from rock falls. Current examples of fences used within Council are provided within Appendix C.

Cliff Zone J present further risk but can be managed by placed the WBBT away from the fall zone and shaping the rock armour in the enclave to ensure any detached soil/rocks will not impact the proposed walkway structure.

Cliff Zone L presents a mix of risks as the WBBT intersects. This segment is unclear to CMW so the risk has been considered moderate, as instabilities could potentially impact the Esplanade.

10 LIMITATIONS

This report has been derived on the basis that the toe of the batter slope and the crest of the batter slope retreat at an even slow rate (as under current conditions). Thus, it is a current assessment of predicted long term stability. Incremental changes of sea level rise and ocean actions may induce changes to the rate of this erosion and cliff retreat. This could change the impact on the coastal cliffs thereby affecting the erosion and retreat of the cliff slope. This erosion will be uneven and biased in places. These predictions should also be revisited periodically.

The findings contained within this report are the result of the review information conducted in accordance with normal practices and standards by others over an extended period of time and supplied to CMW Geosciences Pty Ltd. To the best of our knowledge, they represent a reasonable interpretation of the general condition of the site and information provided.

This report has been prepared for use by City of Onkaparinga in relation to the Christies Beach and Port Noarlunga WBBT Project in accordance with generally accepted consulting practice and based on information supplied by City of Onkaparinga. No other warranty, expressed or implied, is made as to the professional advice included in this report. Use of this report by parties other than City of Onkaparinga and their respective consultants and contractors is at their risk as it may not contain sufficient information for any other purposes.

11 CLOSURE

We trust this is sufficient for your needs but do not hesitate to contact the undersigned with any queries.

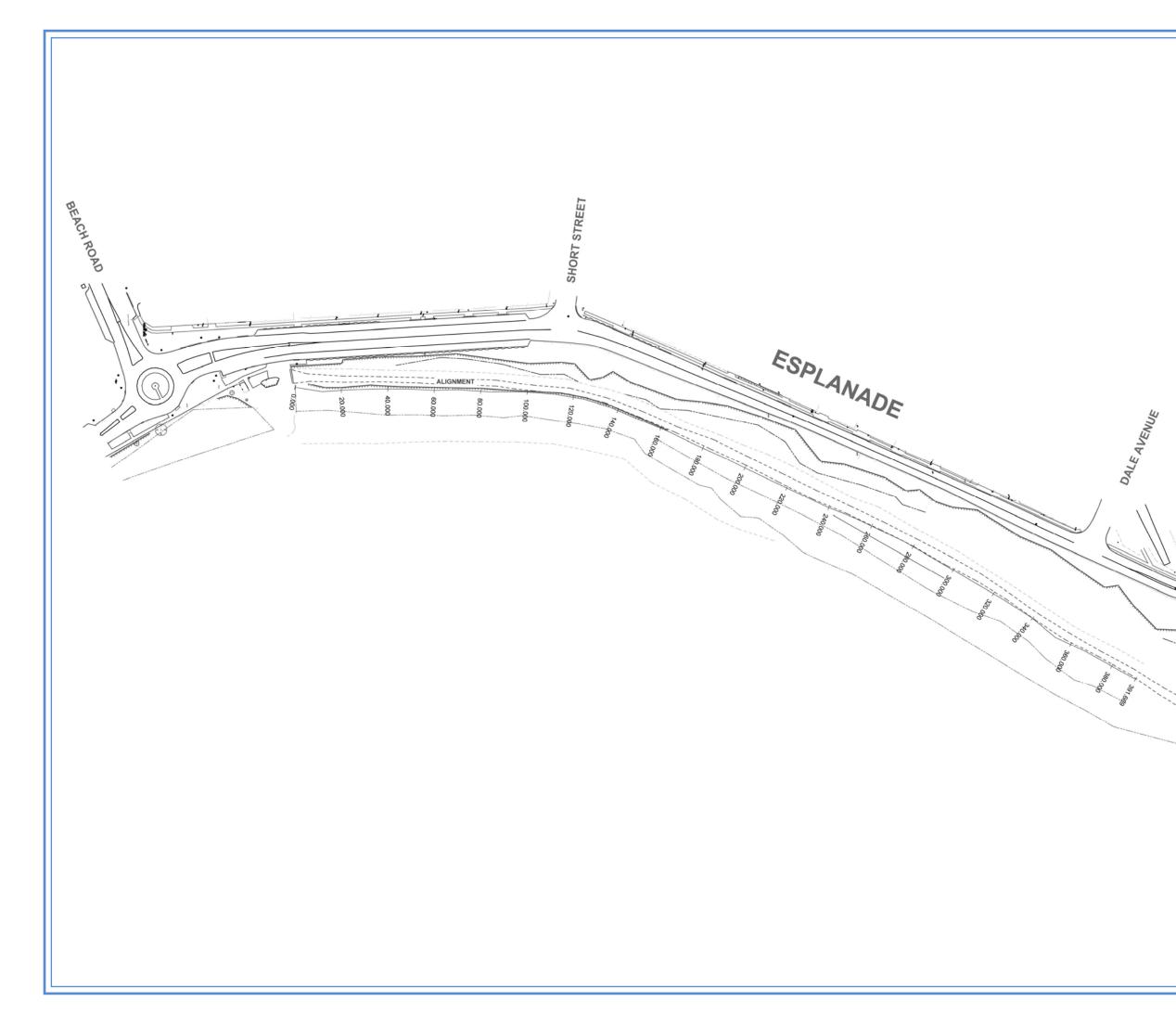
For and on behalf of **CMW Geosciences Pty Ltd**

John Slade

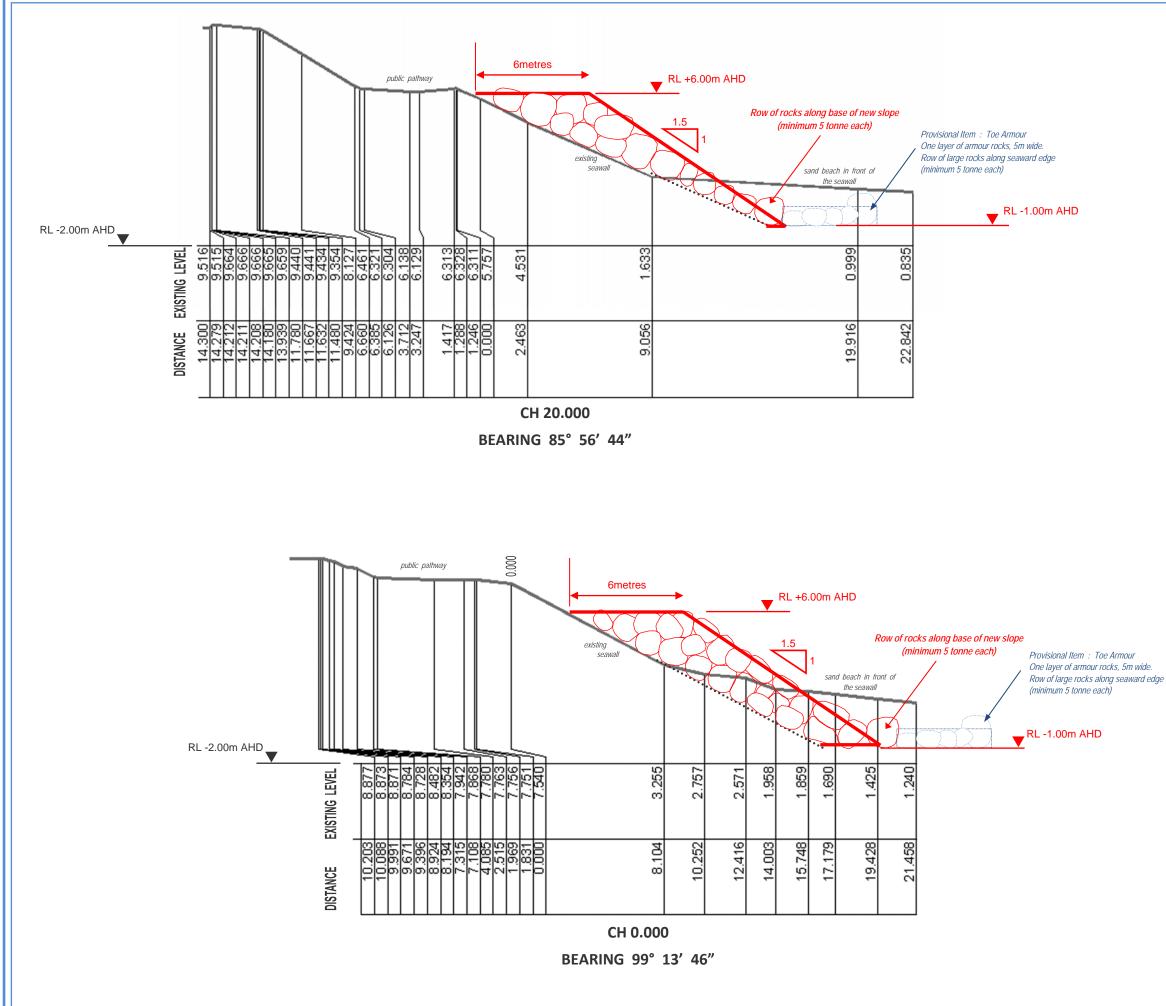
Principal Geotechnical Engineer

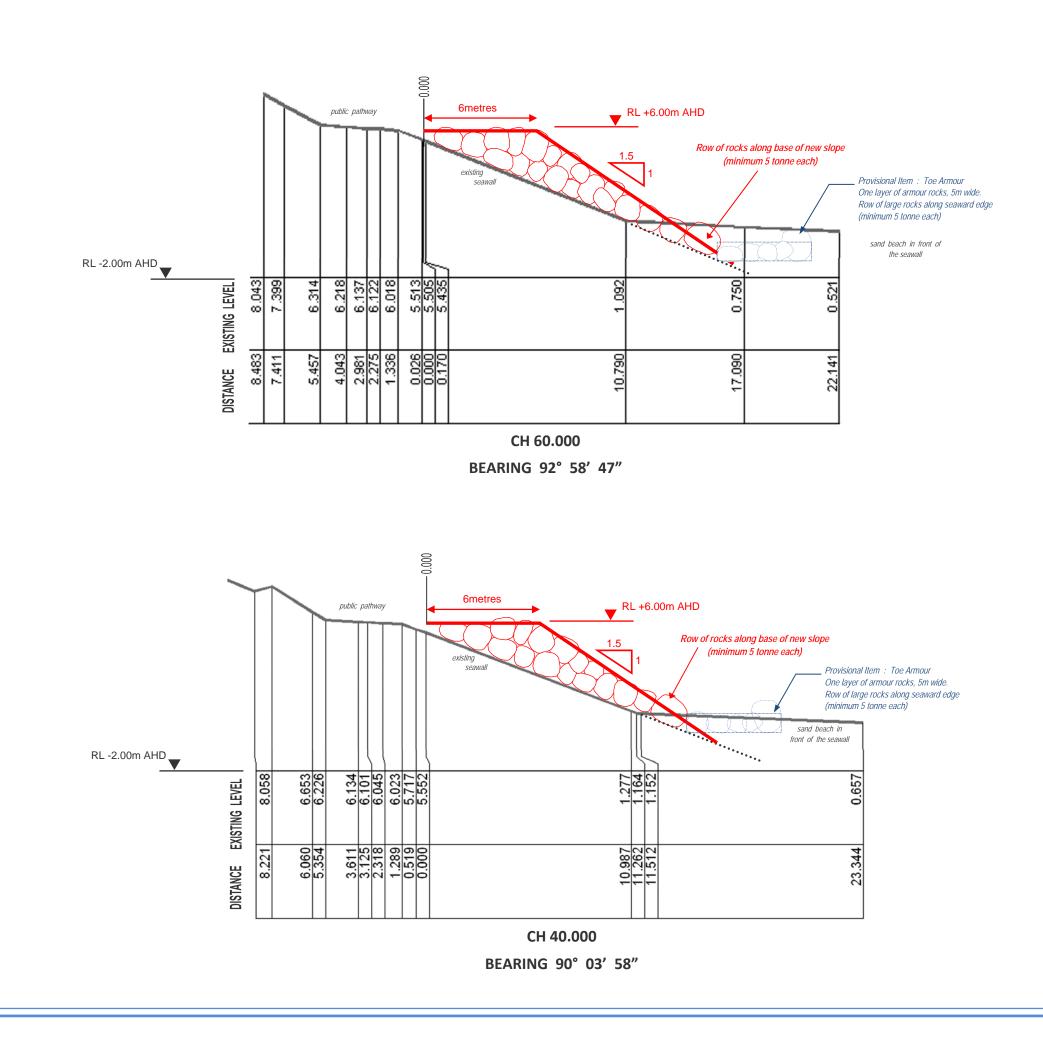
Attachments: Figure 1 - Seawall Plans and Sections

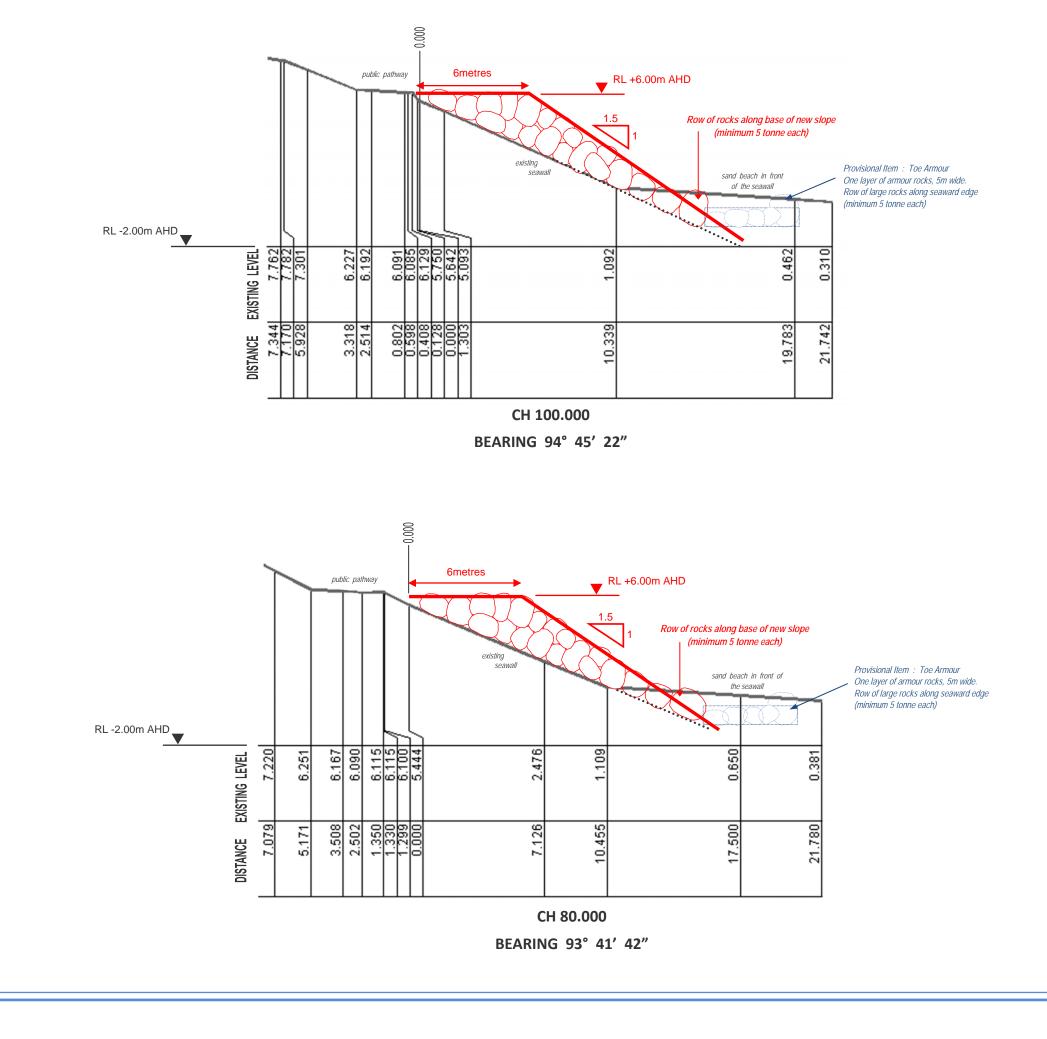
Figure 2 – WBBT concept plan

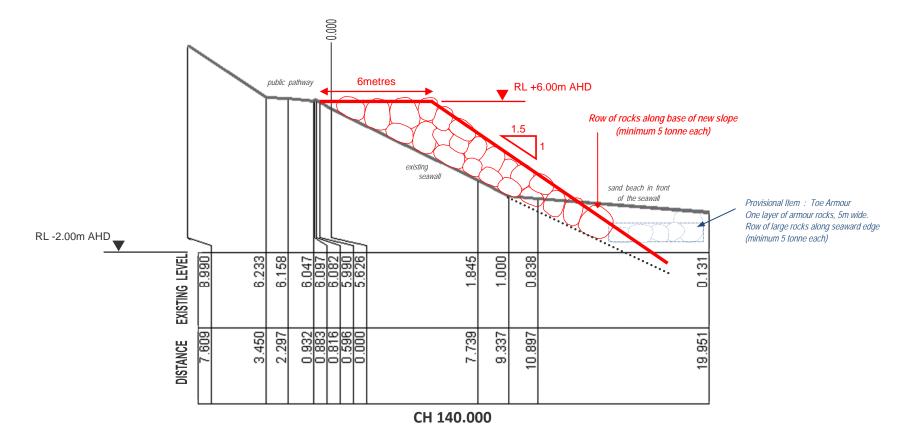

Figure 3 – CMW Slope Stability Risk Assessment and Path realignment suggestions Appendix A: Detailed_Cliff_Stability_Investigations_Stage_2_Final_ReportA 2007 Appendix B: Extracts from GHD Cliff Stability Review Risk Assessment 2016 Appendix C: Current examples of fences installed by Council.

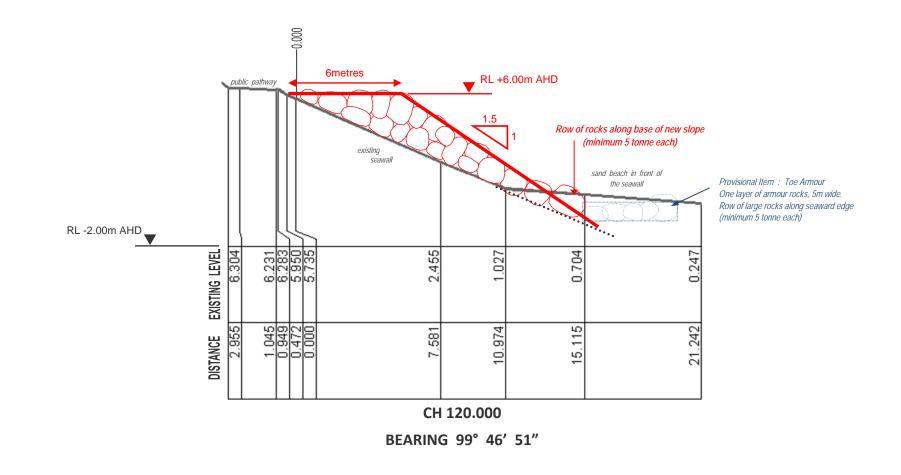
Distribution: 1 copy to City of Onkaparinga (electronic) Original held by CMW Geosciences Pty Ltd 1 copy to Client (electronic) Original held by CMW Geosciences Pty Ltd

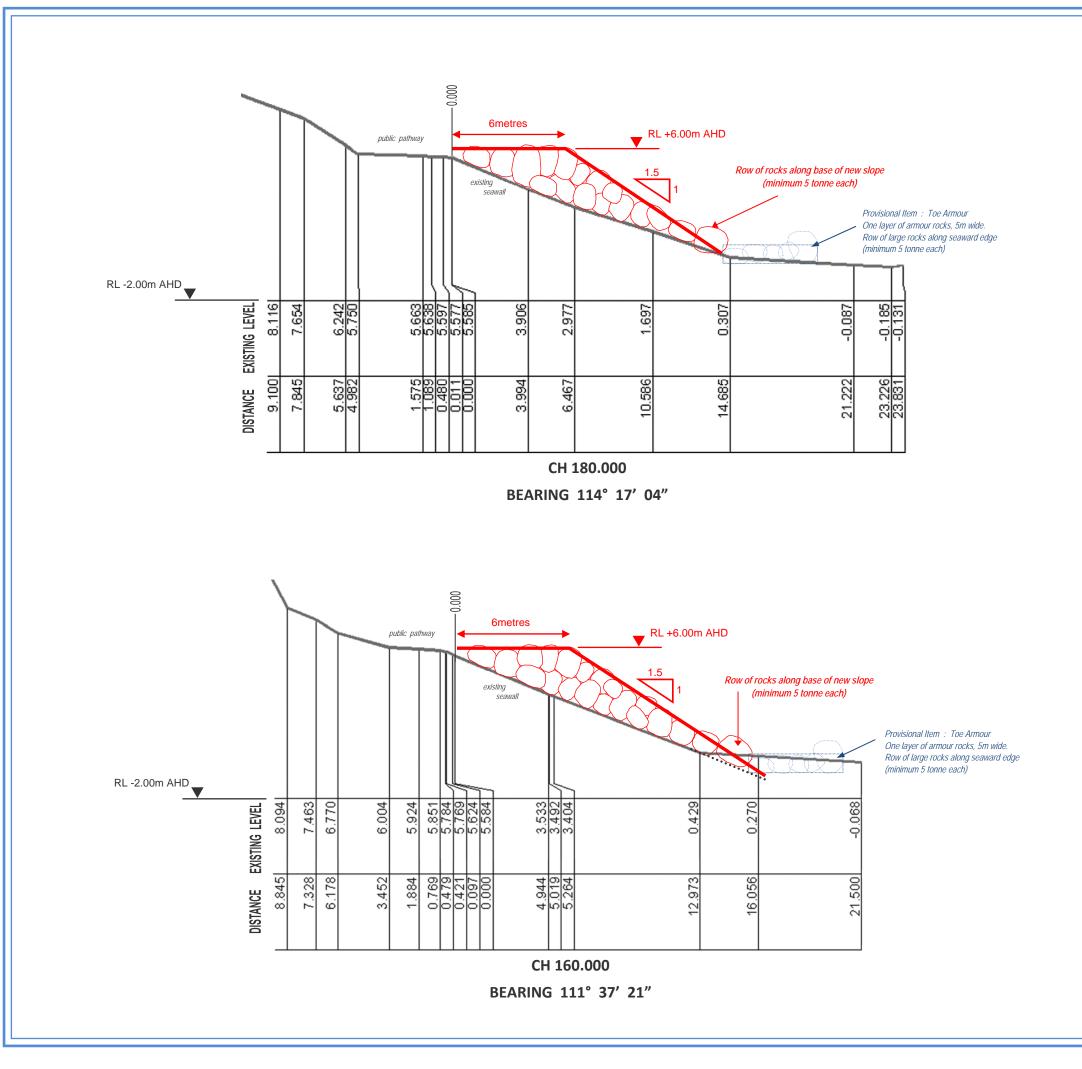

Distribution:

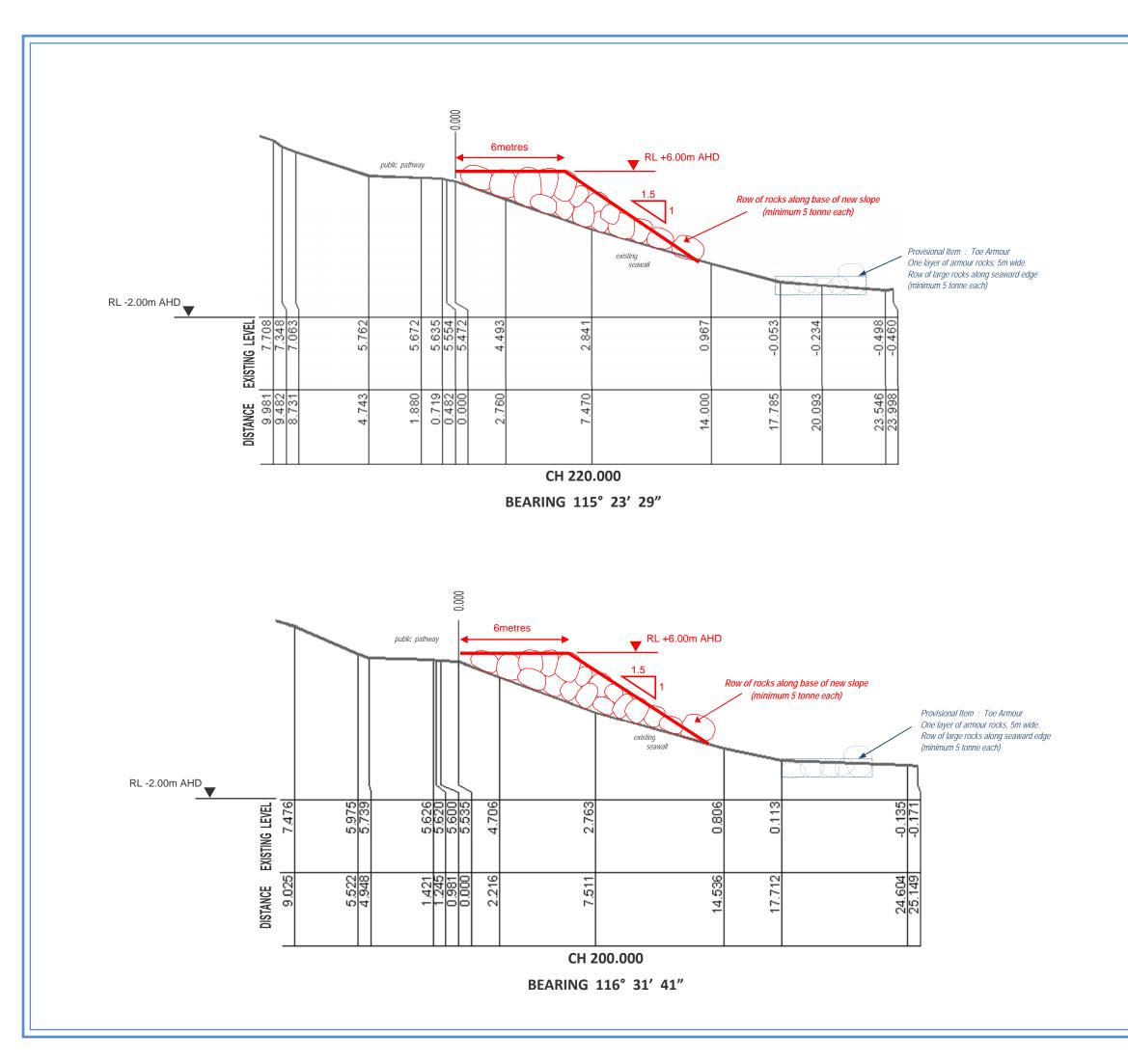

Figure 1: Seawall plan and sections

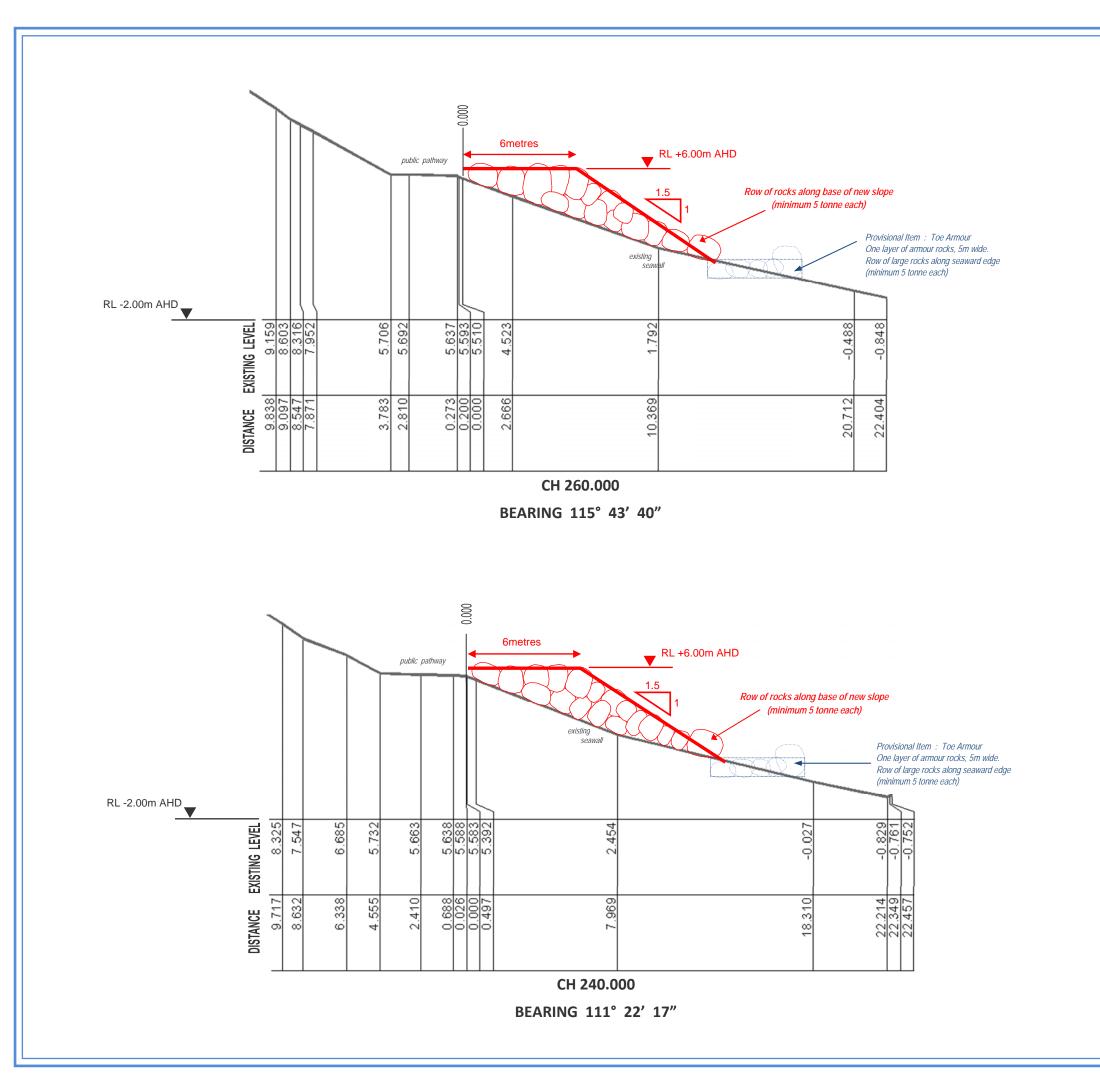

	-				
	co	ASTAL EN	GINEERING S	OLU	TIONS
			59		nbe Road) Box 677
					Samford
				C	LD 4520 Australia
					289 7011 289 7022
					rilda Way ish Creek
				,	VIC 3959 Australia
			tel: (+6	51 3) 5	683 2495
			www.coas	tengso	ol.com.au
		I	1		
ų	A No.	12Aug11 Date	Original Issue Description REVISIONS	РОВ Ву	HPR Chk
	Or	survey infor hkaparinga ((itoCad file 2(mation provided Corporate and Co D11-101(PA).dwg Verti	mmun	
	Scale	e at A3:		1:	1,500
	Proje	CHRISTI	ES BEACH UCTURAL		
	Draw	ving Title		DUT	PLAN
	Drav	ving Num 11 -	ıber: 669SAA - 0	01	Rev: A

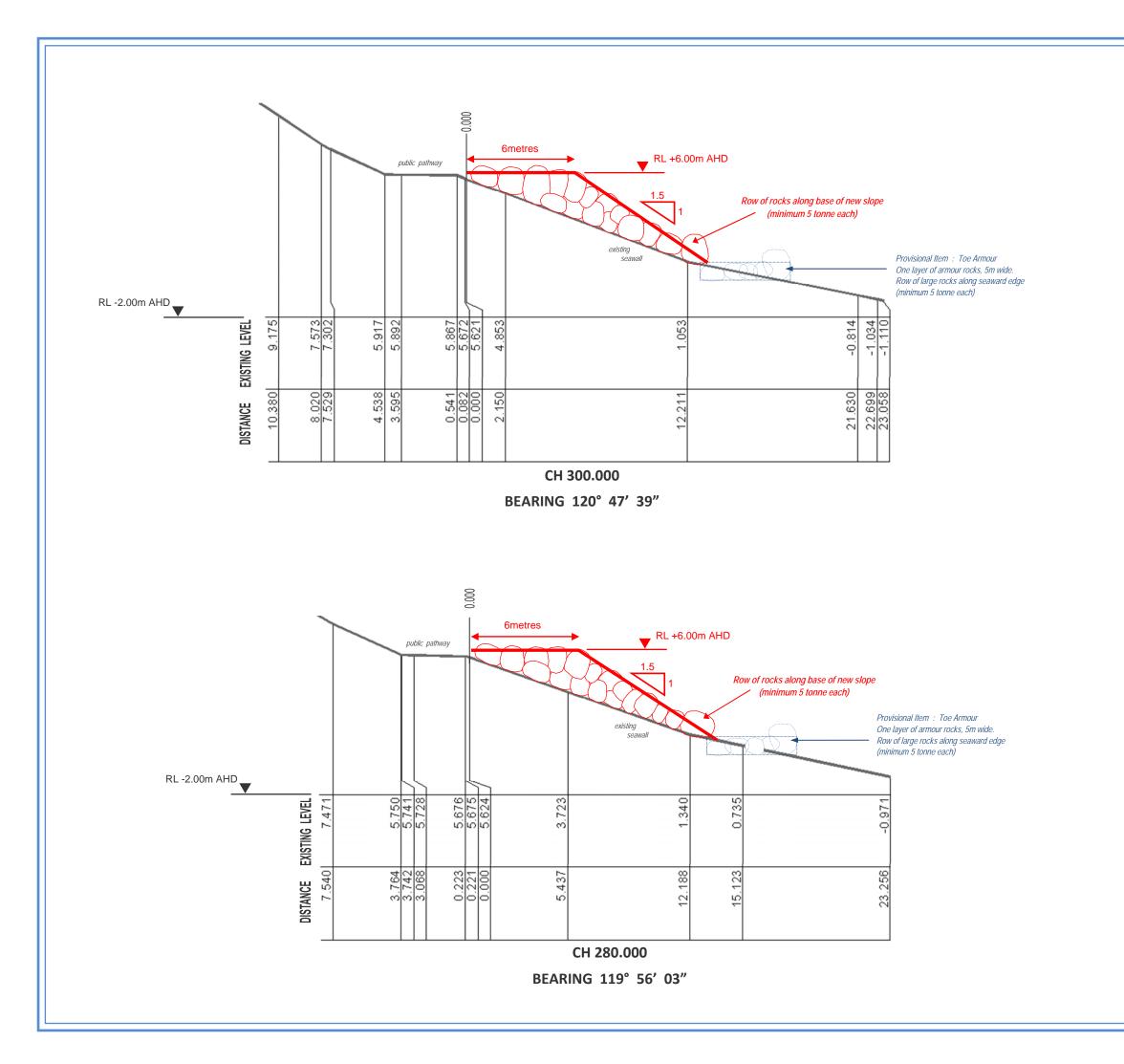

COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR А No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 **VERTICAL** 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 1** Drawing Number: Rev: 11 - 669SAA - 002 Α

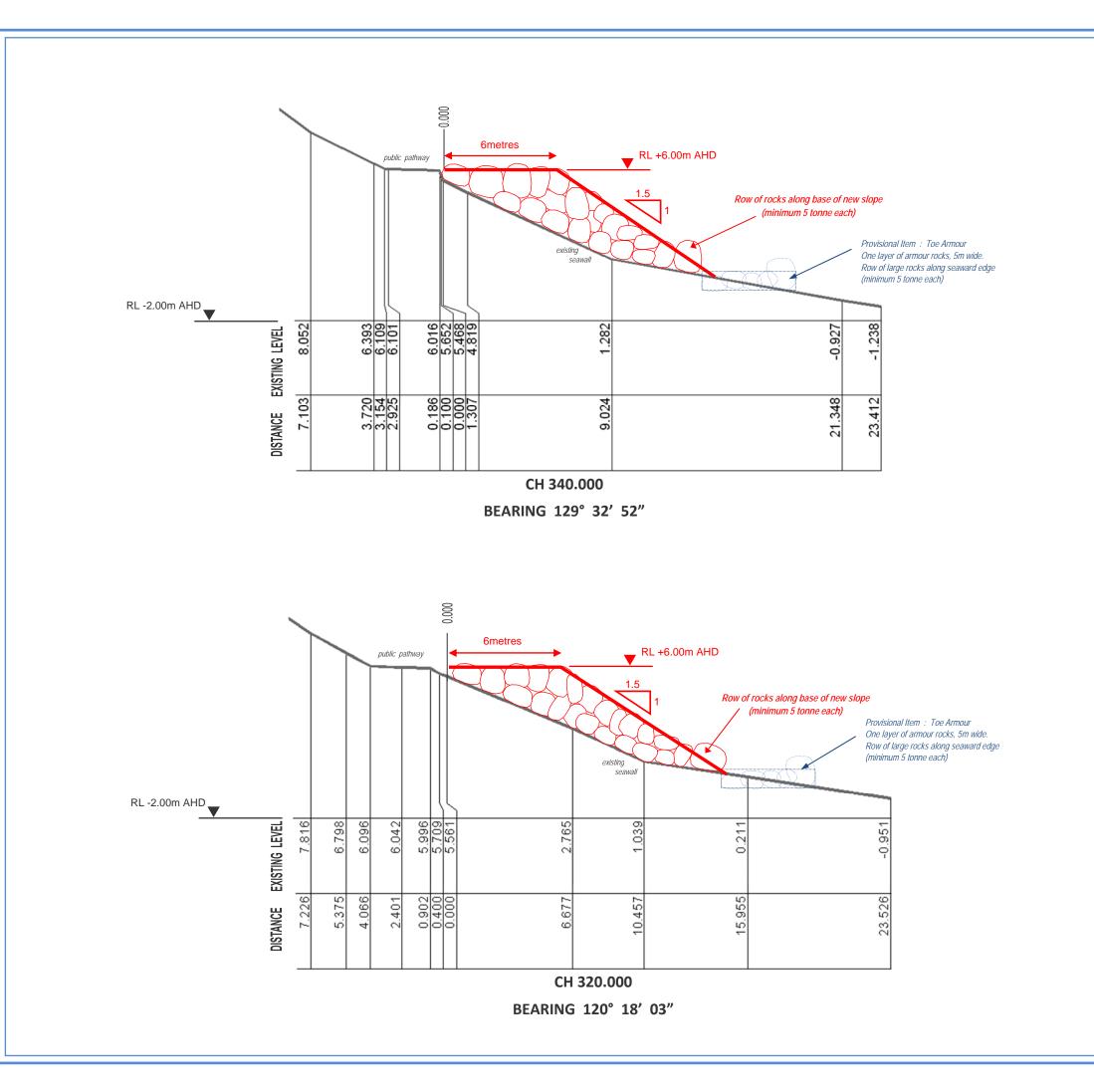

COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB Α HPR No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 2** Drawing Number: Rev: 11 - 669SAA - 003 Α

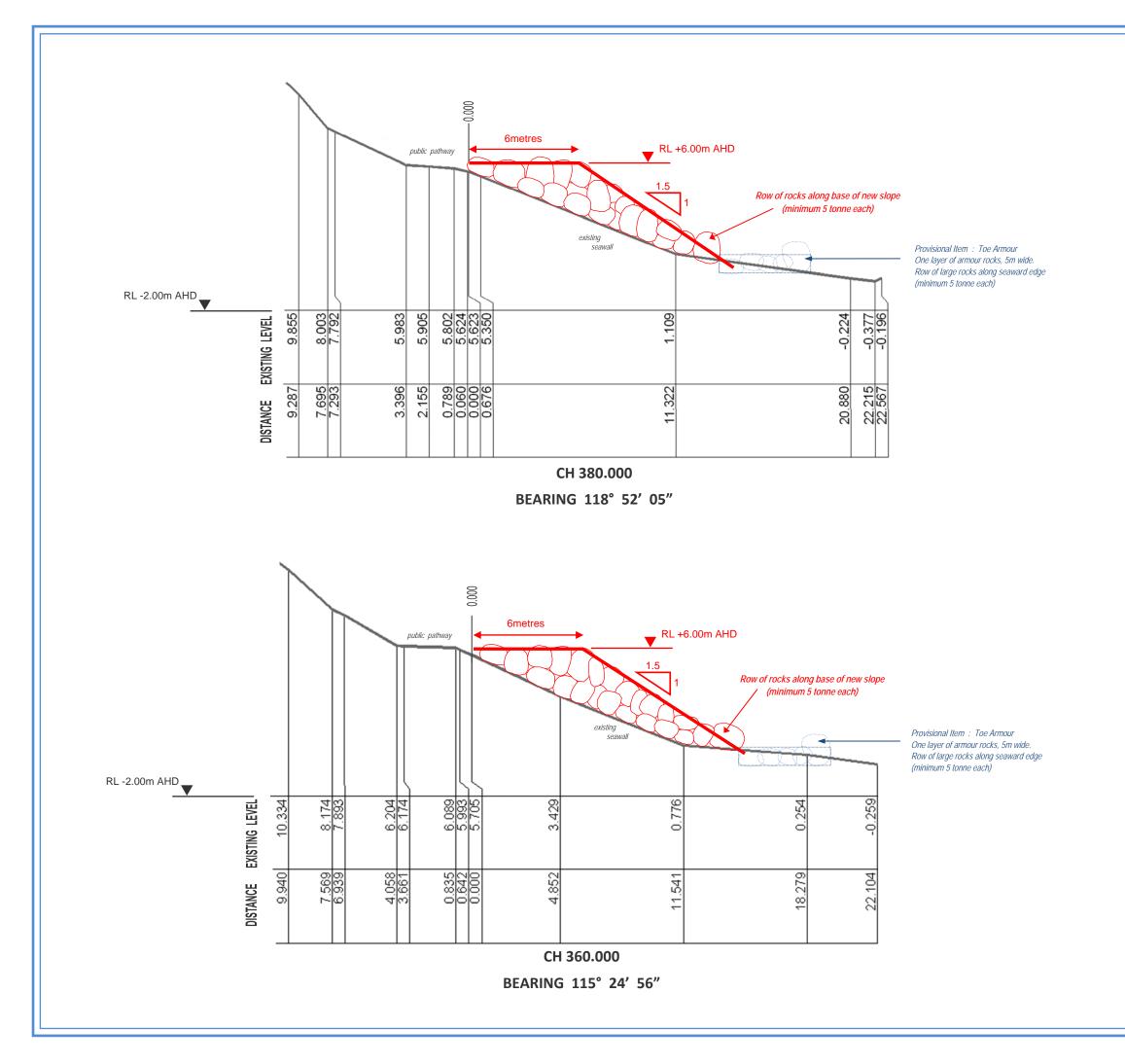

COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB Α HPR No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 3** Drawing Number: Rev: 11 - 669SAA - 004 Α


BEARING 113° 32' 35"


COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR Α No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 4** Drawing Number: Rev: 11 - 669SAA - 005 Α


COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR Α No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 **VERTICAL** 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 5** Drawing Number: Rev: 11 - 669SAA - 006 Α


COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR Α No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 6** Drawing Number: Rev: 11 - 669SAA - 007 Α


COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR Α No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 7** Drawing Number: Rev: 11 - 669SAA - 008 Α

COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR Α No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 8** Drawing Number: Rev: 11 - 669SAA - 009 Α

COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB Α HPR No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 9** Drawing Number: Rev: 11 - 669SAA - 010 Α

COASTAL ENGINEERING SOLUTIONS 59 Hulcombe Road PO Box 677 Samford QLD 4520 Australia tel: (+61 7) 3289 7011 fax: (+61 7) 3289 7022 25 Wirilda Way Fish Creek VIC 3959 Australia tel: (+61 3) 5683 2495 www.coastengsol.com.au 12Aug11 Original Issue POB HPR Α No. Date Description By Chk REVISIONS Notes: 1. All survey information provided by City of Onkaparinga (Corporate and Community) in AutoCad file 2011-101(PA).dwg Datums: Vertical : AHD Scale at A3: HORIZONTAL 1:200 VERTICAL 1:200 Project: **CHRISTIES BEACH SEAWALL** STRUCTURAL UPGRADE Drawing Title: **CROSS SECTIONS - Sheet 10** Drawing Number: Rev: 11 - 669SAA - 011 Α

Figure 2: WBBT concept design and plans

GLIMPSED VIEWS OF THE ROCK PLATFORM. THE PROPOSED BASE TRAIL WILL BE VISIBLE FROM THIS LOCATION. OPTIONS FOR MATERIAL COLOUR WILL NEED TO CONSIDER COMPLIMENTING COLOURATION OF THE ROCK PLATFORM.

.

VIEWS TOWARD THE PORT NOARLUNGA JETTY FROM VIEWING AREA ON THE ESPLANADE. THE BASE TRAIL WILL HAVE LIMITED VISUAL IMPACT FROM THIS AREA DUE TO VEGETATION AND TOPOGRPAHIC SCREENING.

VIEWS TOWARDS THE NORTHERN HEADLAND. THERE IS POTENTIAL TO PLANT COASTAL VEGETATION WITHIN THIS AREA TO REDUCE THE IMPACT OF THE PROPOSED RAMP.

> VIEW TOWARDS THE NORTH WITH THE COVE FORMING A ZONE OF PROTECTION FROM THE PREVAILING SOUTH WESTERLY WINDS. THE RAMP SHOULD REFELCT THE CURVE PROVIDING OPPORTUNITIES FOR **REVEGETATION OF COASTAL SHRUB.**

WITTON BLUFF BASE TRAIL SITE ANALYSIS

© SWANBURY PENGLASE ARCHITECTS ACN 008 202 775 244 GILBERT ST ADELAIDE SA 5000 TEL (08) 8212 2679 FAX (08) 8212 3162 mail@swanburypenglase.com www.swanburypenglase.com

WITTON BLUFF- THE SOUTHERN HEADLAND OF THE BASE TRAIL AND POINT OF CONNECTION TO PORT NOARLUNGA. THE PROPOSED RAMP CONSIDERS THE SENSITIVITY OF THE HEADLAND.

VIEWS TOWARDS WITTON BLUFF. IT IS IMPORTANT TO PROVIDE VIEWS OF THE HEADLAND FROM THE TRAIL AS IT IS A LANDMARK REFERENCE.

VIEWS OF THE ROCK PLATFORM. THE PROPOSED BASE TRAIL WILL BE VISIBLE FROM THIS LOCATION. THE COLOURATION OF THE ROCK PLATFORM WILL NEED TO BE CONSIDERED FOR A COMPLIMENTARY MATERIAL COLOUR SELECTION.

VIEWS TOWARDS THE PROPOSED WITTON BLUFF BASE TRAIL FROM THE PORT NOARLUNGA JETTY. THE ANGLE OF INCLINE OF THE ROCK PLATFORM AND COLOURATION OF THE CLIFF FACE WILL NEED TO BE CONSIDERED IN THE MATERIAL PALETTE SELECTION. THE EMBAYMENT TO THE CENTRE OF THE FIELD OF VIEW FORMS A SIGNIFICANT FEATURE AND WILL NEED TO BE TREATED WITH SENSITIVITY. FURTHERMORE THE ELEVATION OF THE STRUCTURE ON THE ROCK PLATFORM WILL NEED TO CONSIDER THE VISUAL MASS OF THE STRUCTURE BY LIMITING THE AMOUNT OF COLUMNS .

the second second second

SMALL ERODED DEPRESSION ON THE ROCK PLATFORM. THE DESIGN OF THE STRUCTURE WILL NEED TO CONSIDER ELIMINATING THE NEED FOR STRUCTURAL COLUMNS IN THIS LOCATION. THIS WILL REDUCE THE VISUAL MASS FROM VIEWPOINTS ALONG THE PORT NOARLUNGA JETTY. LOCATED CLOSE TO THIS SMALL DE-PRESSION ARE PILE HOLES WHERE A SHELTER STRUCTURE ONCE WAS ERECTED.

VIEWS ACROSS THE EMBAYMENT. THIS AREA IS A FEATURE OF THE TRAIL. THE BASE TRAIL DESIGN WILL NEED TO CONSIDER A STRUCTURAL FORM WHICH ACCENTUATES THIS LOCATION. THERE IS AN OPPORTUNITY TO DESIGN AN ICONIC STRUCTURE.

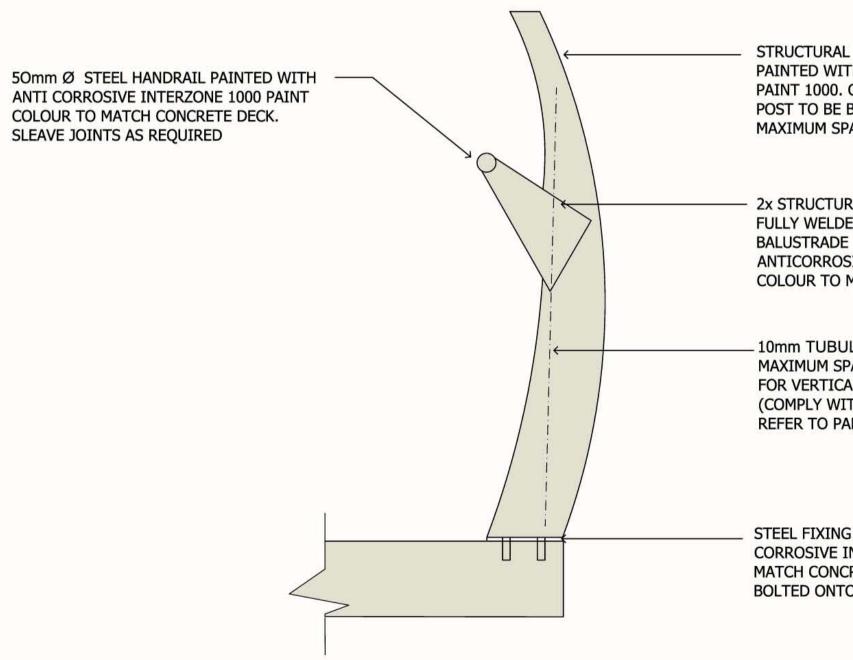
swanbury penglase architects *of human space*

10.10.08 **08146SK01B**



LANDSCAPE CONCEPT

© SWANBURY PENGLASE ARCHITECTS ACN 008 202 775 244 GILBERT ST ADELAIDE SA 5000 TEL (08) 8212 2679 FAX (08) 8212 3162 mail@swanburypenglase.com www.swanburypenglase.com


08146SK02B

CONCRETE DECK SCALE 1:20@A1

WITTON BLUFF BASE TRAIL **CONCRETE DECK**

SECTION BALUSTRADE DETAIL SCALE 1:10@A1

STRUCTURAL STEEL BALUSTRADE POST PAINTED WITH ANTI CORROSIVE INTERZONE PAINT 1000. COLOUR TO MATCH CONCRETE DECK. POST TO BE BOLTED TO CONCRETE DECK MAXIMUM SPACING OF 2000mm

- 2x STRUCTURAL STEEL FLAT BAR FULLY WELDED TO BOTH SIDES OF BALUSTRADE POST. PAINTED WITH ANTICORROSIVE INTERZONE PAINT 1000 COLOUR TO MATCH CONCRETE DECK

— 10mm TUBULAR STEEL MAXIMUM SPACING OF 80mm FOR VERTICALS (COMPLY WITH BCA) REFER TO PANEL ELEVATION

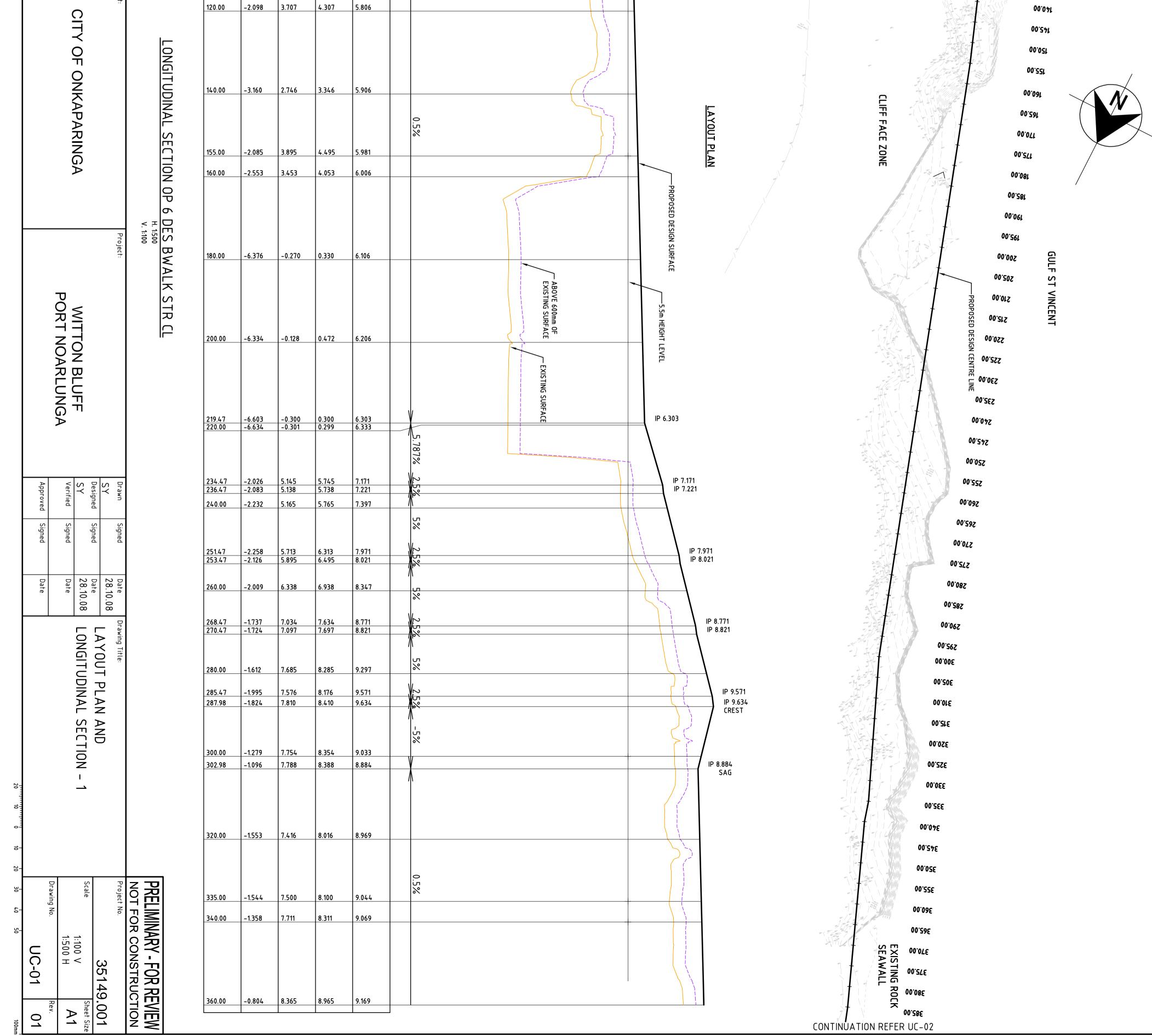
STEEL FIXING PLATE PAINTED WITH ANTI CORROSIVE INTERZONE 1000. COLOUR TO MATCH CONCRETE DECK BOLTED ONTO CONCRETE BEAM.

10.10.08 08146 SK05C

PHOTOMONTAGE- ARTISTS IMPRESSION NOT TO SCALE

WITTON BLUFF BASE TRAIL PHOTOMONTAGE

© SWANBURY PENGLASE ARCHITECTS ACN 008 202 775 244 GILBERT ST ADELAIDE SA 5000 TEL (08) 8212 2679 FAX (08) 8212 3162 mail@swanburypenglase.com www.swanburypenglase.com


swanbury penglase architects *of human space*

11.11.08 08146 SK10

01 28.10.08 FOR REVIEW	DEPTH CENTRELINE CHAINAGE	DESIGN CENTRELINE LEVEL EXISTING SURFACE PLUS NATURAL SURFACE LEVEL	EXISTING BEACH AREA %% %% %% %% %% %% %% %% %% %% %% %% %%
	0.00 -0.300	6	in and the second secon
	5.00 -0.512		5%
	15.00 -2.629 15.01 -2.630 17.00 -2.223 20.00 -1.287	3.381 3.981 6.009 3.379 3.979 6.009 3.836 4.436 6.059 4.922 5.522 6.209	IP 6.009 IP 6.059 IP 6.059
	30.00 -3.307 32.00 -3.601 34.00 -3.737 35.00 -3.661	3.402 4.002 6.709 3.208 3.808 6.809 3.122 3.722 6.859 3.248 3.848 6.909	V V V V V V V V V V V V V V V V V V V
Y	40.00 -1.574 41.71 -1.089 43.71 -1.334		IP 7.245
	43.71 -1.334	5.861 6.461 7.195	
	50.00 -1.780	5.100 5.700 6.880	
Connell Wagner Pty Ltd ABN 55 Grenfell Street Adelaide South Australia 5000 Australia	58.71 -3.417 60.00 -3.363 60.71 -3.333 65.00 -3.116		N 00'5L UN 00'08 UN 00'58 UN 00'58 UN 00'06
and other	75.71 -2.435 77.71 -2.354 80.00 -2.317	3.210 3.810 5.645 3.240 3.840 5.595 3.289 3.889 5.606	N IP 5.645 IP 5.595 SAG
TEF 139 873 Telephone:+61 8 8237 9777 Facsimile: +61 8 8237 9778 Email: cwadl@conwag.com	100.00 -2.084	3.622 4.222 5.706	00'0EL 00'0EL
C	115.00 -2.013	3.768 4.368 5.781	00.2ET
ient:			

DEVICE= \\SYD2K_SERVER05\LEXMARK OPTRA N LEVEL 2 NORTH

STYLE= ----

00/000000000

Connell Wagner Pty Ltd ABN 54 005 139 873 Telephone: +61 8 8237 97 55 Grenfell Street Adelaide South Australia 5000 Australia South Australia accepts the risk of: 1. using the drawings and other data in electronic form without requesting and checking them for			UT/FILL EPTH	NATURAL SURFACE LEVEL	EXISTING SURFACE PLUS 600	DESIGN CENTRELINE
ABN 5 Ide Istralia Istralia		360.00	-0.804	8.365	ACE PLUS 600	9.169
ABN 54 005 139 873 ABN 54 oof 139 873 ABN 54 oof 139 873		362.98 377.98 379.98	-0.815 -3.615 -3.531 -3.530	8.369 4.818 4.852 4.853	8.969 5.418 5.452 5.453	9.184 8.434 8.384 8.383
Telephone: +61 8 8237 9777 Facsimile: +61 8 8237 9778 Email: cwadl@conwag.com	ITUDINAL	380.00 385.00	-3.258	4.875	5.475	8.133
m	LONGITUDINAL SECTION OP	394.98 396.98 400.00	-2.624 -2.548 -2.422	5.009 5.035 5.011	5.609 5.635 5.611	7.634 7.584 7.433
\frown	6 DES H. 1:500 V. 1:100	411.98 413.98 420.00	-1.854 -1.806 -1.466	4.980 4.977 5.017	5.580 5.577 5.617	6.834 6.784 6.483
CITY OF ONKAPARINGA	BWALK STR CL	428.98 430.98 435.00	-0.971 -0.907 -0.821	5.062 5.076 5.104	5.662 5.676 5.704	6.034 5.984 5.925
ARINGA		440.00	-0.728	5.125	5.725	5.853
,	Project:	460.00 464.34	-0.147 -0.014	5.416	6.016 6.086	5.563
WITTO PORT N		480.00 483.09 484.34 484.85	0.000 0.000 -0.000 0.000	5.832 5.898 5.943 5.938	6.432 6.498 6.543 6.538	5.832 5.898 5.943 5.938
SYSY28.10.08DN BLUFFDesignedSignedDateSYSY28.10.08VerifiedVerifiedSignedDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDateDate	Drawn Signed Date Drawing Title:					

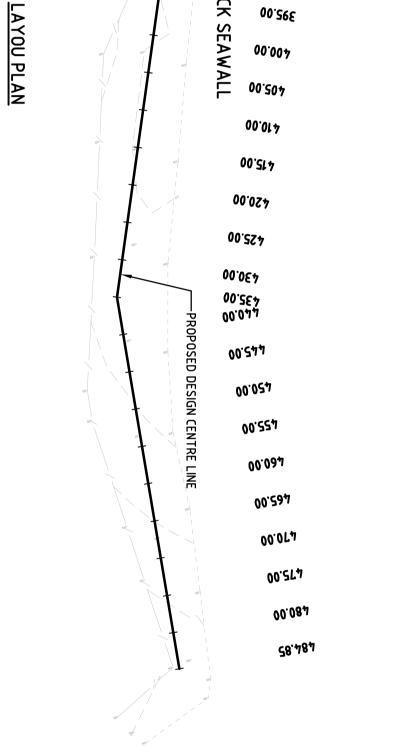
CENTRELINE CHAINAGE	CUT/FILL DEPTH	NATURAL SURFACE LEVEL	EXISTING SURFACE PLUS 600	DESIGN CENTRELINE LEVEL	Datum RL. 0.00	GRADE %	VERTICAL CURVE	HORIZONTAL CURVE		
360.00	-0.804	8.365	8.965	9.169		0				_
362.98	-0.815	8.369	8.969	9.184		5%				IP 9.184
502.70	-0.015	0.007	0.707	7.104		-5%				CREST
377.98	-3.615	4.818	5.418	8.434		2.5%				IP 8.434
379.98	-3.531	4.852	5.452	8.384		Vion				IP 8.384
380.00	-3.530	4.853	5.453	8.383		Å ≈				
385.00	-3.258	4.875	5.475	8.133		<u>∧</u> -5%				
<u>394.98</u> 396.98	-2.624 -2.548	5.009 5.035	5.609 5.635	7.634 7.584		-2.5%				IP 7.634 IP 7.584
						\mathbb{N}				
400.00	-2.422	5.011	5.611	7.433		-5%				PROPOS
/ 11 00	105/	1 000	F F 00	(07)		V.			/	
411.98	-1.854	4.980	5.580	6.834		₩ંગ				
413.98 420.00	<u>-1.806</u> -1.466	4.977 5.017	5.577 5.617	6.784 6.483		-5%				IP 6.834 IP 6.784 IP 6.784
						.				-

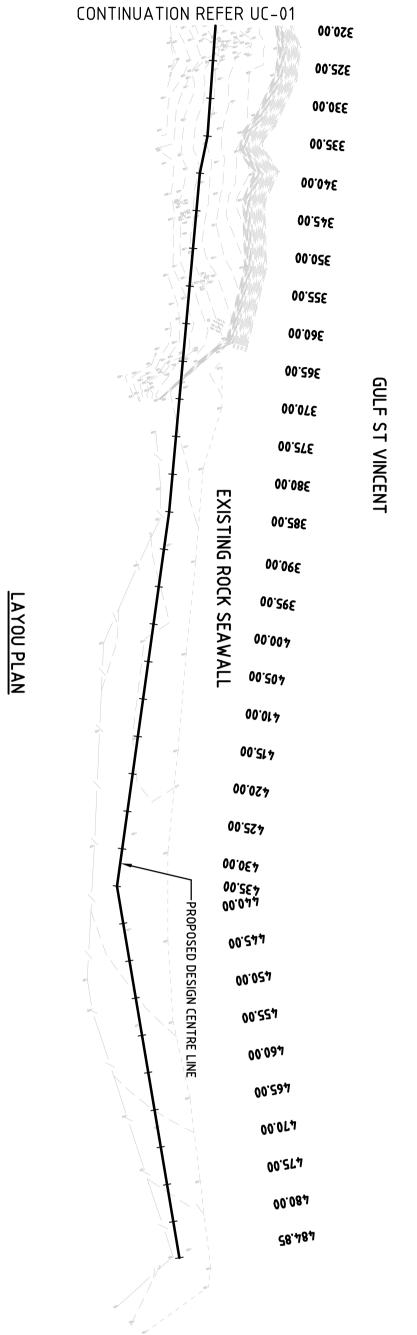
-1.45%

|N

.121%

8178


EXISTING SURFACE


IP 6.034 IP 5.984

IP 5.500 SAG

- ABOVE 600mm OF EXISTING SURFACE CREST CREST

5.5m HEIGHT LEVEL

				01.DWG	FILENAME= W:\35149-001\UC 01.DWG	USER= SOPHIA YAN	SCALE=1:1	PLOT DATE=11/7/2008 11:31 AM	LOT DAT	
reed to in writing by Connell Wa	accuracy against the original hard copy versions; 2. using the drawings or other data for any purpose not agreed to in writing by Connell Wagner	Ver. App.	Ver.	Drn			Revision Details	Date	Rev.	STYLE=
pts the risk of: out requesting and checking the	A person using Connell Wagner drawings and other data accepts the risk of: 1. using the drawings and other data in electronic form without requesting and checking them for			ΥS			FOR REVIEW	28.10.08	01	:
										_
Facsimile: +61 8 8237 9778	55 Grenfell Street Adelaide South Australia 5000 Australia									
3 Telephone: +61 8 823	Connell Wagner Pty Ltd ABN 54 005 139 873 Telephone:+61 8 8237 9777									
	Connen Arghiel									
1										

	DESIGN OFFSET	EXISTING SURFACE	DEPTH	EXISTING SURFACE PLUS	design height	Centreline Data X = 4699.97 Y = 3019.734 Z = 5.956 Datum -1
CHAINAGE	2.022	2 ((7	0.000	600	2 6 6 7	
$\overline{\mathbf{A}}$	-2.023	3.667 3.669	0.000 -2.306	4.267 4.269	3.667 5.976	
	0.000	4.304	-1.652	4.209	5.956	1%
E 150.000	2.000	4.536 4.537	-1.400	5.136 5.137	5.936 4.537	-1%
00						Ϋ́

Centreline Data X = 4793.845 Y = 2921.909 Z = 5.259 Datum 2

- 10/o

			1%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-1%
Centreline Data X = 4684.115 Y = 3067.151 Z = 6.206					
Datum -2			\checkmark		
Design Height		-0.285	6.226	6.206	6.186 -0.064
EXISTING SURFACE PLUS	600	0.315	0.316	0.472	0.530 0.536
DEPTH		-0.000	-6.510	-6.334	-6.256 0.000
EXISTING SURFACE		-0.285	-0.284	-0.128	-0.070 -0.064
DESIGN OFFSET		-2.065	-2.000	0.000	2.000 2.063

DESIGN OFFSET	EXISTING SURFACE	DEPTH	EXISTING SURFACE PLUS 6	DESIGN HEIGHT	Datum -2	П	X = 4684.115 Y = 3067.151	Centreline Data	
-2.065 -2.000 0.000	-0.285 -0.284 -0.128	-0.000 -6.510 -6.334	0.315 0.316 0.472	-0.285 6.226 6.206					
2.000	-0.070	-6.256	0.530	6.186					

	DESIGN OFFSET	EXISTING SURFACE	DEPTH	EXISTING SURFACE PLUS	design height	Centreline Data X = 4668.435 Y = 3114.628 Z = 7.897 Datum 4
CHAINAGE	-2.025 -2.000 0.000	5.441 5.444 5.642	-0.000 -2.474 -2.256	6.041 6.044 6.242	5.441 7.917 7.897	1%
E 250.000	2.000 2.020	5.874 5.876	-2.004	6.474 6.476	7.877 5.876	-1%

Centreline Data X = 4748.314 Y = 2933.177 Z = 6.88 Datum 0

EXISTING

SURFACE

EXISTING

SURFACE

PLUS

600

5.406

5.410

5.700

5.665

5.665

Design Height

4.806

6.900

6.880

6.860

5.065

DEPTH

0.000

-2.090

-1.780

-1.795

-0.000

DESIGN

OFFSET

-2.021 4.806

-2.000 4.810

2.000 5.065

2.018 5.065

5.100

0.000

CHAINAGE

50.000

000	00.			Þ	CHAINAGE 100.000	
	2.019	2.000	0.000	-2.000	-2.022 -2.000	DESIGN OFFSET
	3.771	3.770	3.622	3.506	3.505	EXISTING SURFACE
	-0.000	-1.916	-2.084	-2.220	0.000	DEPTH
	4.371	4.370	4.222	4.106	4.105	EXISTING SURFACE PLUS
	3.771	5.686	5.706	5.726	3.505 5.726	Design Height
EXISTING SURFACE						= 2974. = 5.706 atum 1
ABOVE 600mm OF EXISTING SURFACE		-1%	1%			Centreline Data X = 4719.962

PROPOSED DESIGN SURFACE

DEVICE= \\SYD2K_SERVER05\LEXMARK OPTRA N LEVEL 2 NORTH

DESIGN

OFFSET

-2.007 4.620 -2.000 4.621

2.000 5.563

2.003 5.566

0.000

4.959

CHAINAGE

0.000

EXISTING

SURFACE

EXISTING

SURFACE

PLUS

600

5.220

5.221

5.559

6.163

6.166

design height

4.620

5.279

5.259

5.239

5.566

DEPTH

-0.000

-0.658

-0.300

0.324

-0.000

Drawn SY Designed SY Verified Approved	.000							000							
Signed Date 28.10.08 Signed Date Signed Date Signed Date		DESIGN OFF	EXISTING 2	DEPTH	EXISTING SL		Centreline Data X = 4595.862 Y = 3300.271 Z = 5.708 Datum 4			DESIGN OF	EXISTING	DEPTH	EXISTING SL		X = 4575.109 Y = 3328.269 Z = 5.938 Datum 4
CROSS SECTIONS	CH	FSET	SURFACE		SURFACE PLUS 600	HEIGHT	152 ata	(CH,	OFFSET	SURFACE		SURFACE PLUS 600	HEIGHT	
SNO	CHAINAGE 450.	-2.005 -2.000 0.000 2.000 2.004	5.203 5.203 5.259 5.316 5.316	-0.000 -0.525 -0.449 -0.372 -0.000	5.803 5.803 5.859 5.916 5.916	5.203 5.728 5.708 5.688 5.316	1% -1%			-2.000 -2.000 0.000 2.000	5.931 5.931 5.938	-0.000 -0.027 0.000	6.531 6.531 6.538 5.918	5.931 5.958 5.938	1% -1%
	450.000								484.851						
Project No. Scale Drawing No. UC	PRELIMINARY - FOR REVIEW														
35149.001 30 V 00 H A1 A1 Pev Rev 01	FOR REVIEV														

WITTON BLUFF PORT NOARLUNGA

CITY OF ONKAPARINGA

	ect	
	Ξ	

CHAINAGE 300.0

EXISTING SURFACE

DESIGN OFFSET

-2.015 7.526 -2.000 7.527 0.000 7.754

8.203 8.204

2.000 2.008

DEPTH

-0.000 -1.526 -1.279

-0.809

ESIGN	XISTING	DEPTH	
OFFSET	SURF A CE		

Rev.	Date
1:200 V 1:200 H A1	28.10.08 Date
35149	07
	Date Drawing Title:
PRELIMINARY - FOR REVIEW	
CHAINAGE 450.000	
-2.005 -2.000 0.000 2.000 2.004	DESIGN OFFSET
	EXISTING SURFACE
-0.000 -0.525 -0.449 -0.372 -0.000	DEPTH
5.803 5.803 5.859 5.916 5.916	EXISTING SURFACE PLUS
5.203 5.728 5.708 5.688 5.316	Design Height
	Centreline Data X = 4595.862 Y = 3300.271 Z = 5.708 Datum 4
CHAINAGE 484.851	
-2.000 -2.000 0.000 2.000	DESIGN OFFSET
5.931 5.931 5.938	EXISTING SURFACE
-0.000 -0.027 0.000	DEPTH
6.531 6.538 5.918	EXISTING SURFACE PLUS
5.931 5.958 5.938	Design Height
	X = 4575.109 Y = 3328.269 Z = 5.938 Datum 4

DESIGN	HEIGHT
EXISTING	SURFACE P
DEPTH	
EXISTING	SURFACE
DESIGN	OFFSET

1		1%
T	ſ	1% -1%

Centreline Data X = 4652.754 Y = 3162.106 Z = 9.033 Datum -2

Design Height

7.526 9.053 9.033

9.013 8.204

EXISTING SURFACE PLUS

600

8.126 8.127 8.354

8.803 8.804

CHAINAGE 350.0

EXISTING SURFACE

CHAINAGE 400.000

Centreline Data X = 4616.208 Y = 3255.134 Datum 3 DESIGN HEIGHT EXISTING SURFACE PLUS	600	5.596 4.996 5.596 7.453 ∕ →	5.611 7.433	5.663 7.413 3
EXISTING SURFACE PLUS	600			
DEPTH		0.000 -2.456	-2.422	-2.349 0.000
EXISTING SURFACE		4.996	5.011	5.063 5.065
DESIGN OFFSET		-2.025 -2.000	0.000	2.000 2.023

DESIGN OFFSET	EXISTING SURFACE	DEPTH	EXISTING SURFACE PLUS	DESIGN HEIGHT	Z = 7.433 Datum 3	X = 4616.208 Y = 3255.134
			600			
-2.025	4.996	0.000	5.596	4.996		
-2.000	4.996	-2.456	5.596	7.453		
0.000	5.011	-2.422	5.611	7.433		

00

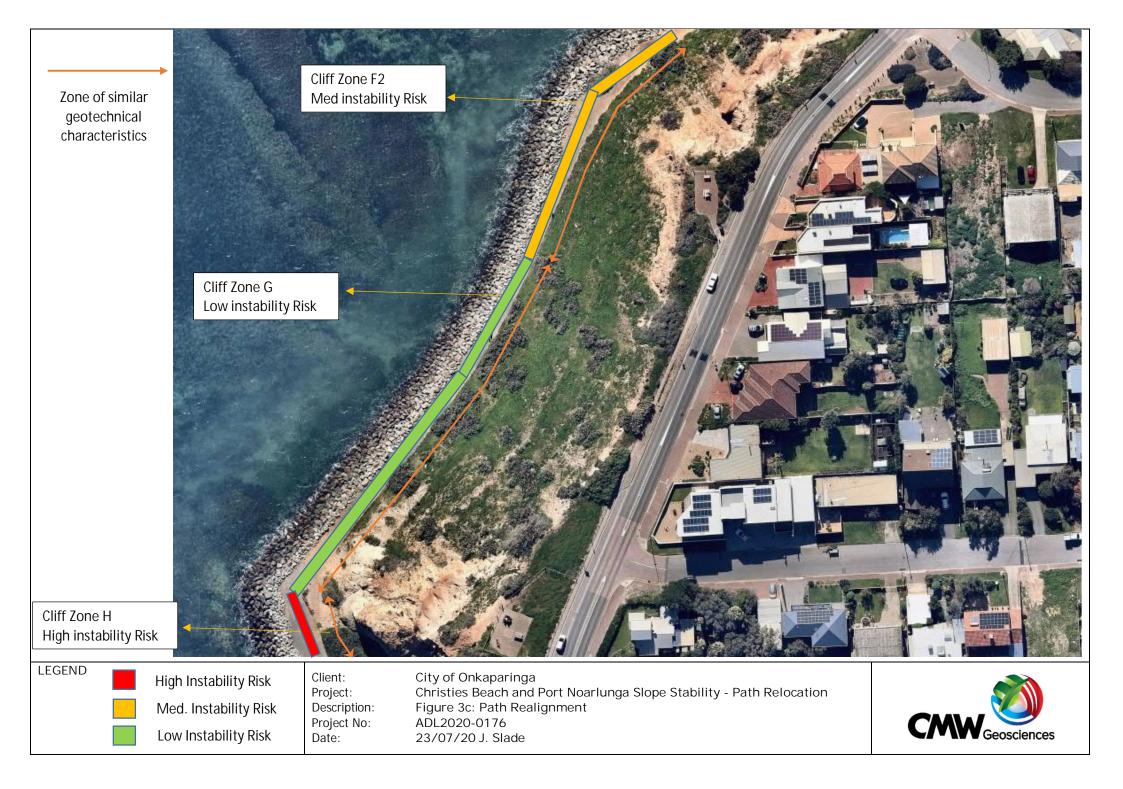
CHAINAGE 200.000

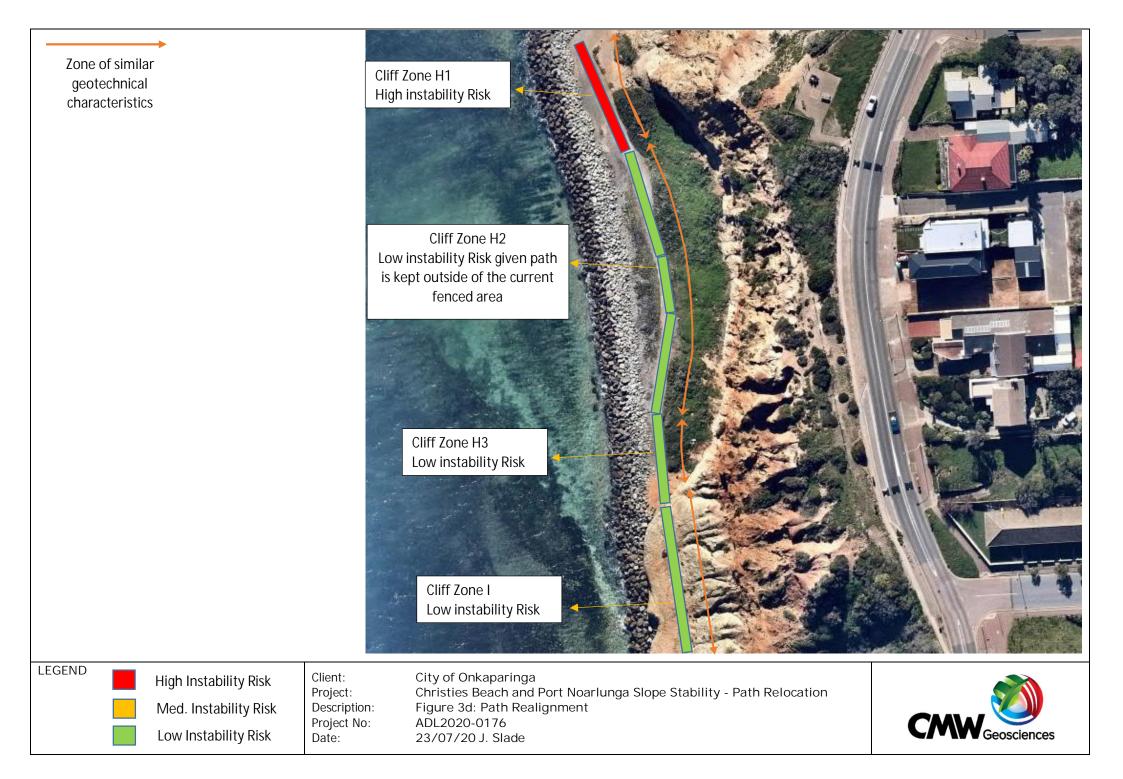
Figure 3: CMW Slope Stability Risk Assessment and Path realignment suggestions

Zone of similar geotechnical characteristics		
Cliff Zone B High instability Risk		
LEGEND High Instability Risk Med. Instability Risk Low Instability Risk	Client: City of Onkaparinga Project: Christies Beach and Port Noarlunga Slope Stability - Path Relocation Description: Figure 3a: Path Realignment Project No: ADL2020-0176 Date: 23/07/20 J. Slade) ences

Zone of similar geotechnical characteristics

LEGEND




Description: Project No: Date:

Low Instability Risk

Figure 3b: Path Realignment ADL2020-0176 23/07/20 J. Slade

CMW_{Geosciences}

Zone of similar geotechnical characteristics

> It is recommended to place the footings for the elevated walkway away from the edge of the current upper platform. This is too avoid cliff retreat but also strong vertical joints that persist in the rock mass and when loaded may result in lateral movement of the rock.

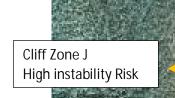
Select trimming of the local rock is recommended to ensure the northern elevated walkway abutment to Zone J is pushed east into the slope.

LEGEND

High Instability Risk Med. Instability Risk Low Instability Risk Client:

Project:

Date:


Description:

Project No:

City of Onkaparinga Christies Beach and Port Noarlunga Slope Stability - Path Relocation Figure 3e: Path Realignment ADL2020-0176 23/07/20 J. Slade

Zone of similar geotechnical characteristics

It is noted that this Zone J present the highest likelihood of instability but if the walkway is offset from the cliff the risk of interaction with falling soil and rocks can be separated.

Is it recommended to make this structure is made out of steel or wood and be a small diameter footing will be difficult and therefore gravity not bored pile footings are suggested.

> Cliff Zone K Low instability Risk


> > Client:

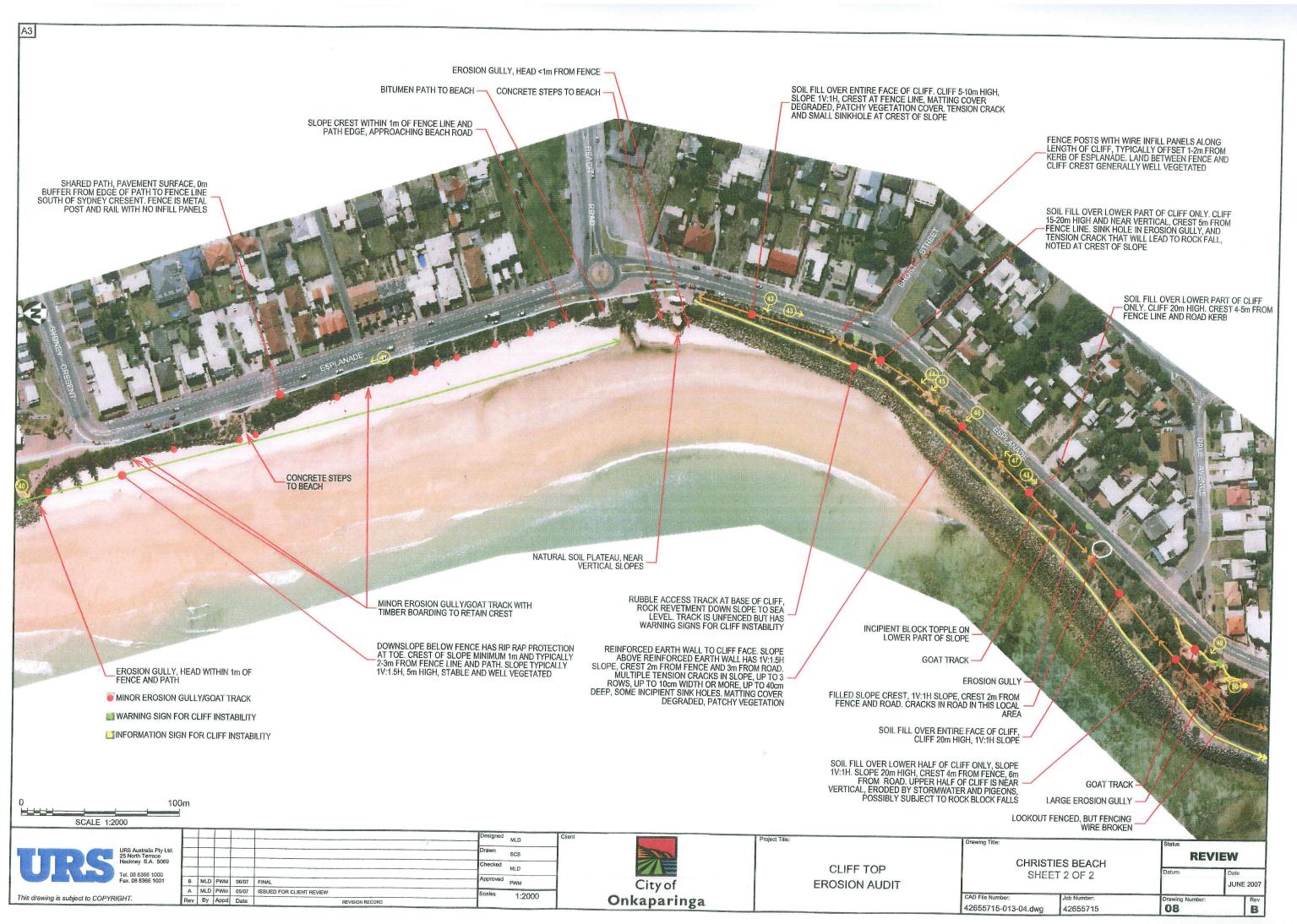
Project:

Date:

Description:

Project No:

LEGEND



High Instability Risk Med. Instability Risk Low Instability Risk City of Onkaparinga Christies Beach and Port Noarlunga Slope Stability - Path Relocation Figure 3f: Path Realignment ADL2020-0176 23/07/20 J. Slade

Appendix A: Detailed_Cliff_Stability_Investigations_ Stage_2_Final_ReportA 2007

FENCE					WIRE	FENCING TO GRASSED	AREA								
					💓 WARN	IING SIGN FOR CLIFF INS	STABILITY								
					5 INFOR	MATION SIGN FOR CLIF	F INSTABILITY								
100 SCALE 1:2000	0m														
_	-	-						Designed	MLD	Client			Project Title:		Drawi
URS Australia Pty Ltd. 25 North Terrace							λ	Drawn	SCS	1	- AL				1.000
Hackney S.A. 5069 Tel. 08 8366 1000		+-						Checked	MLD	1				CLIFF TOP	
Fax. 08 8366 1001	-				7 FINAL			Approved	PWM		Cityof			EROSION AUDIT	
is drawing is subject to COPYRIGHT.	AM			-				Scales	1:2000						CAD F
	Rev	Ву	Appo	Date		REVISION RECORD				L Or	nkaparing	a			4265

RUBBLE ACCESS PATH, DOWNSLOPE COMPRISES ROCK ARMOUR

MINOR GULLY, HEAD 3m OFFSET FROM FENCE

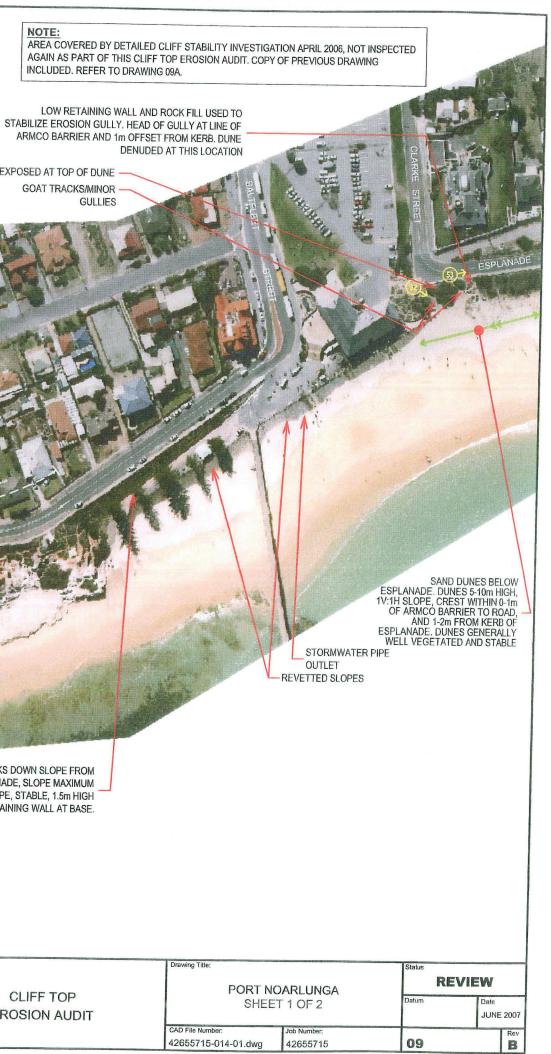
-RUBBLE FILL PAD SEAWARD OF LOOKOUT

ESPLANADE IS A KERBED ROAD WITH WIRE FENCING ALONG ITS EDGE

SEVERAL GOAT TRACKS DOWN SLOPE FROM ESPLANADE TO PROMENADE, SLOPE MAXIMUM 5m HIGH, 1V:1H SLOPE, STABLE, 1.5m HIGH STONE RETAINING WALL AT BASE.

SOIL FILL OVER ENTIRE FACE OF CLIFF. CLIFF IS 30m HIGH, 1V:1H SLOPE, VEGETATED AND STABLE

CREST OF CLIFF OVER STEEPENED BUT SEEMS STABLE, AS NO UNDERCUTTING AT BASE OF OVERSTEEPENED SECTION AND LAND BEHIND CREST APPEARS TO FALL BACK TOWARD ROAD, CLIFF TOP SOIL PROFILE IS AEOLIAN SOIL OVER CALCRETE OVER CLAYEY SOIL


A3

NOTE: INCLUDED. REFER TO DRAWING 09A.

CALCRETE EXPOSED AT TOP OF DUNE

GOAT TRACKS/MINOR

GULLIES

CLIFF TOP EROSION AUDIT

RISK ASSESSMENTS, RECOMMENDED RISK TREATMENTS AND COST ESTIMATES

REVISION 0 Jun-07

SUBURB: Christies Beach

Hazard	Drawing Nos	Plate Nos	Element at Risk	Score for Probability of Spatial Impact	Score for Temporal Probability	Score for Vulnerability	Risk Score for Element at Risk	Overall Risk Score for Hazard	Comment	Recommended Risk Treatment	Item	Quantity	Unit	Rate (\$/unit)	Item Cost (\$)	Remedial Works Cost (\$)	Comment
Gully erosion of slope crest	07, 08	39, 40, 41	Persons walking or bicycling along path behind slope crest	1	1	1	1			Infill gullies	Supply and place rubble below slope crest at approximately 25 small gullies below path.	125	m ³	80	10000	10000	Address drainage lines and goat tracks down slope crest.
			Path and fence behind crest	2	2	1	4	4	Fencing close to slope crest								
Soil slump of slope crest	08	42, 43, 46, 47	Persons walking or bicycling along access path at cliff		2	2	8		Slump material wil	Infill sinkholes and tension cracks	Clean out eroded/softened material from sinkholes and tension cracks, then supply and place bentonite granules to fill voids	2	days	1000	2000		Slope above reinforced earth wall and slope north of Short Street. Assume hand cleaning out and filling using 2 man crew .
			Road pavement and fence behind crest	1	2	1	2		Fencing set back several metres from crest	Revegetation along cliff	Box out existing soil where required and supply and place 0.3 m thickness of plant growing medium	300	m ³	40	12000		Slope and crest above reinforced earth wall and crest behind slope north of Short Street.
			Base access path						Slump unlikely to		Supply and place erosion						
			pavement	. 1	2	1	2		damage path		control matting Supply and place	1000	m²	8	8000		· · · · · · · · · · · · · · · · · · ·
											vegetation and maintain during Year 1	1000	m²	10	10000		
											Maintain vegetation over Years 2 to 5	1000	m ³	15	15000	47000	
Block falls/slides and topples from cliff	08	45, 48, 50, 51	Persons walking or bicycling along access path at cliff base	2	2	2	8		Generally not a clif top erosion hazard but a cliff face	Recommend additional risk specific warning signage on base path and further assessment of potential failure blocks to determine if knocking them down is warranted.							
			Base access path pavement	2	2	1	4	-									

Notes

Costs are engineers estimates only and are based on the available information. A quantity surveyor should be consulted should more accurate costings be required.
 Costs assume that all remedial works at all sites are undertaken as part of a single contract involving a single mobilisation to site.
 All Council costs (consents, insurance, legals, community consultation, Aboriginal monitoring, etc) have been excluded from the above costs.
 Costs based on 2007 prices and are exclusive of GST.
 It is suggested that 15 % be added to the above costs for project management and supervision, and a further 20 % be added for contingency

CLIFF TOP EROSION AUDIT

RISK ASSESSMENTS, RECOMMENDED RISK TREATMENTS AND COST ESTIMATES

REVISION 0 Jun-07

SUBURB: Port Noarlunga

Hazard	Drawing Nos	Plate Nos	Element at Risk	Score for Probability of Spatial Impact	Score for Temporal Probability	Score for Vulnerability	Risk Score for Element at Risk	Overall Risk Score for Hazard	Comment	Recommended Risk Treatment	ltem	Quantity	Unit	Rate (\$/unit)	Item Cost (\$)	Remedial Works Cost (\$)	Comment
Gully erosion of slope crest	09, 10	52-54	Persons walking on footpath behind slope crest	1	1	1	1		Armco barrier present		Supply and place rubble below slope crest at approximately 10 small gullies below footpath.	50	m³	40	2000		Address drainage lines and goat tracks down slope crest.
			Road, footpath and fence behind crest	2	2	1	4	4	Fence, footpath and road close to slope crest								

Notes

Costs are engineers estimates only and are based on the available information. A quantity surveyor should be consulted should more accurate costings be required.
 Costs assume that all remedial works at all sites are undertaken as part of a single contract involving a single mobilisation to site.
 All Council costs (consents, insurance, legals, community consultation, Aboriginal monitoring, etc) have been excluded from the above costs.
 Costs based on 2007 prices and are exclusive of GST.
 It is suggested that 15 % be added to the above costs for project management and supervision, and a further 20 % be added for contingency

.

Appendix B: Extracts from GHD Cliff Stability Review Risk Assessment 2016

4.5 Semi-Quantitative Risk Assessment - Risk to Property

4.5.1 Methodology

The assessment of risk to property has considered only council assets at cliff top level.

AGS (2007) descriptions for qualitative measures of likelihood for assessing risk to property appear to align with the broad description for likelihood given in the COO Risk Management Framework (2010-2013). AGS include a sixth division, 'barely credible' (refer **Error! Reference source not found.**).

The AGS descriptions for qualitative measures of consequence to property could also be considered to align with those given by COO. The consequences are separated into 5 divisions in both documents (refer Table 6 - AGS and COO qualitative consequence terms compared).

AGS qualitative me	asures of likelihood		COO likelihood rating						
Approximate annual probability	Descriptor	Level	Rating	Level					
10 ⁻¹	Almost certain	А	Almost certain	5					
10 ⁻²	Likely	В	Likely	4					
10 ⁻³	Possible	С	Possible	3					
10 ⁻⁴	Unlikely	D	Unlikely	2					
10 ⁻⁵	Rare	E	Rare	1					
10 ⁻⁶	Barely credible	F							

Table 5 - AGS and COO qualitative likelihood terms compared

AGS qualitative me	easures of conseque	COO consequence rating						
Approximate Cost of Damage – Indicative value	Descriptor	Level	Rating	Level				
200%	Catastrophic	1	Critical	5				
60%	Major	2	Serious	4				
20%	Medium	3	Moderate	3				
5%	Minor	4	Minor	2				
0.5%	Insignificant	5	Negligible	1				

Table 6 - AGS and COO qualitative consequence terms compared

The COO risk assessment matrix contains four risk ratings, while the AGS risk analysis matrix contains 5, the additional risk level being 'very low risk'. Both AGS and COO risk implications broadly agree that very high and high risk ratings would require further treatment (risk control), moderate ratings may require additional treatment, and low risk ratings are usually acceptable. Except in the instance of very high ratings, the COO risk matrix tends to be more conservative than that suggested by the AGS. It is noted that the COO implications between risk ratings high and very high are a different level of management review, but that both require evaluation of control measures (refer **Error! Reference source not found.** and Table 8 - COO risk assessment matrix (axes reversed to match AGS matrix)).

In order to generally apply AGS guidance, while adopting COO risk management guidelines the following approach has been adopted. For assessment of risk to property, where assets are identified that may be at risk semi-quantitative techniques have been used whereby estimated landslide likelihood (derived during the assessment of risk to life) and assessment of likelihood of spatial impact (qualitatively assessed per zone) are combined to provide a qualitative measure of likelihood, using the approximate annual probabilities in the AGS guidelines. AGS levels E and F (rare and barely credible) have been combined to one level. Consequence has been assessed qualitatively using guideline descriptors in both AGS and COO guidelines.

These levels will be assessed against the COO risk assessment matrix to provide a risk rating for each hazard type identified at each site.

Table 7 – Qualitative risk analysis matrix – level of risk to property (AGS2007)

				Consequences		
		Catastrophic	Major	Medium	Minor	Insignificant
	Almost Certain	VH	VH	VH	н	M or L
	Likely	VH	VH	н	М	L
Likelihood	Possible	VH	Н	М	М	VL
ikeli	Unlikely	н	М	L	L	VL
	Rare	М	L	L	VL	VL
	Barely Credible	L	VL	VL	VL	VL

Table 8 - COO risk assessment matrix (axes reversed to match AGS matrix)

				Consequences		
		5	4	3	2	1
	5	VH	VH	Н	Н	н
bo	4	VH	н	н	М	М
Likelihood	3	Н	н	н	М	L
Lik	2	Н	М	М	L	L
	1	М	М	L	L	L

4.5.2 Likelihood

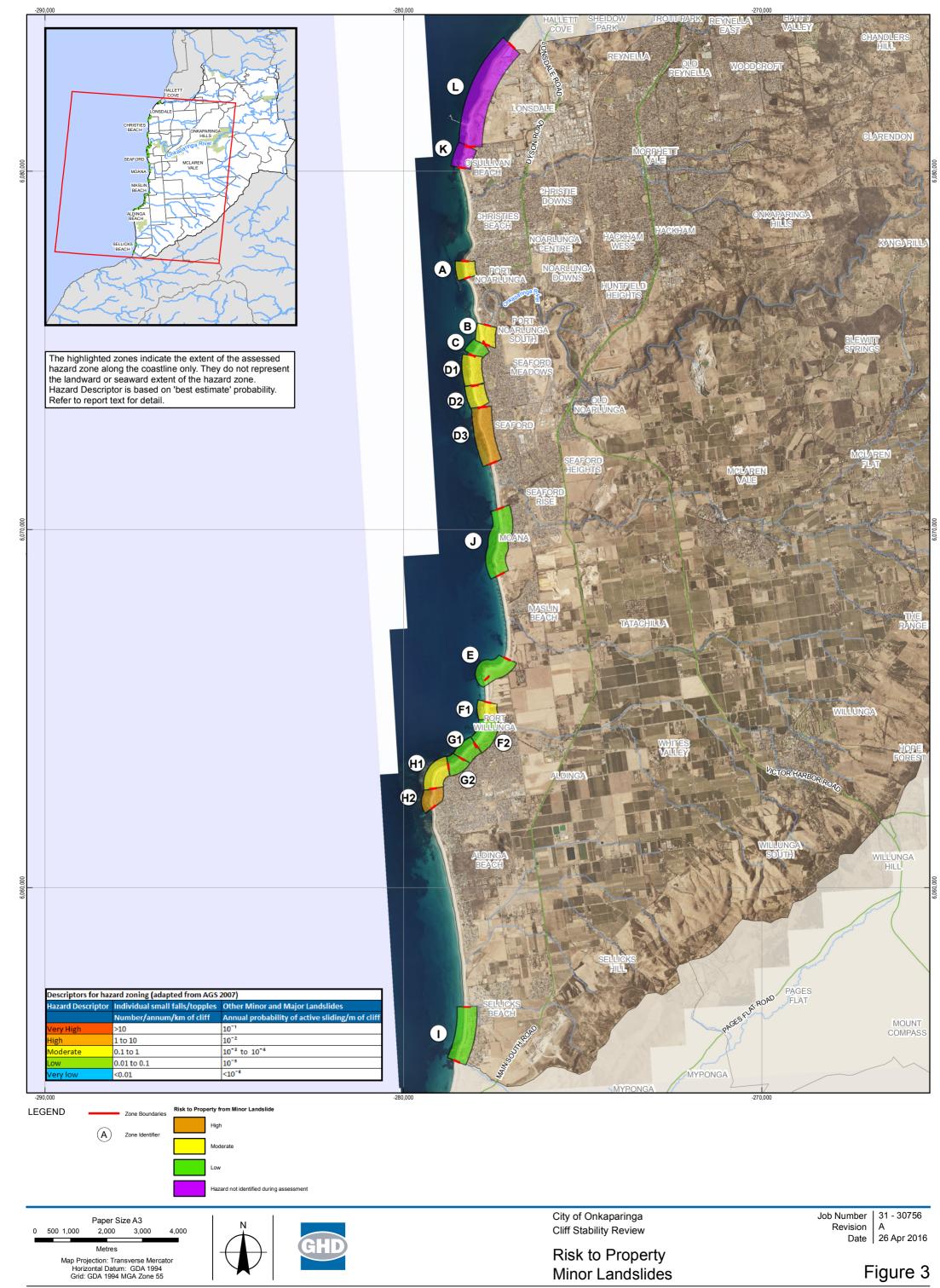
The probability of landslides has been based directly on the probability of events occurring and impacting the crest as estimated for the risk to life (Section 4.4). No consideration has been given to individual small falls (danger class A) as they are considered unlikely to impact cliff top infrastructure.

The maximum depth of failure effect from the cliff crest has been estimated from the compiled inventory. The estimated probability of spatial impact has been estimated per zone based on a qualitative assessment of the proportion of the zone which has assets located within this distance of the crest.

Combining the two probabilities above results in an estimated likelihood value. Likelihoods have been derived using both the pessimistic and 'best estimate' values for probability of occurrence.

4.5.3 Consequence

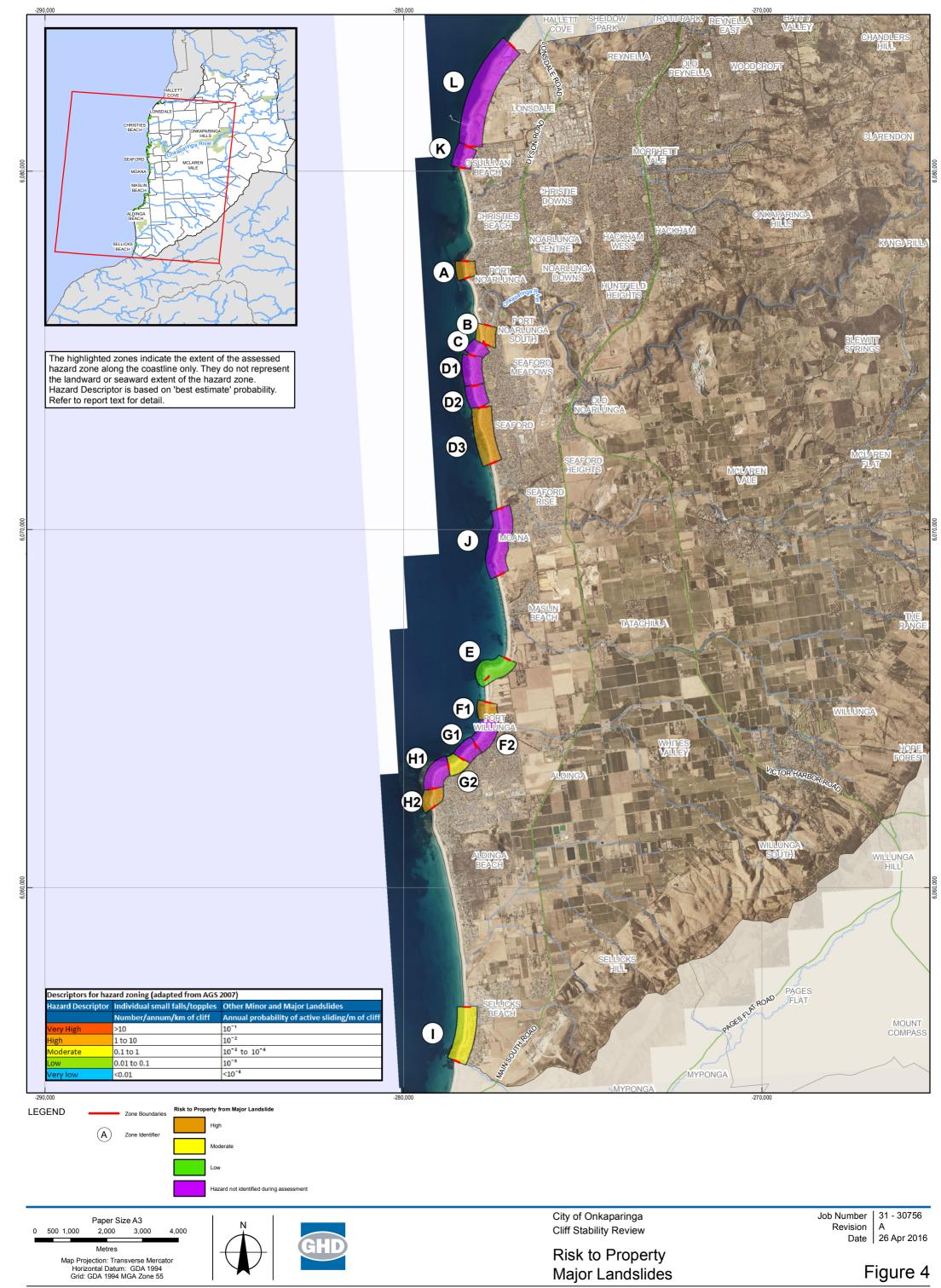
The consequence for potentially impacted assets has been qualitatively estimated based on the asset type and estimated failure size. In this instance the landslides are always considered to be occurring below the asset rather than potentially impacting them from above. This distinction results in generally high consequences in all instances. Assessed consequence values varied from 3 to 5, with the lower end usually minor failures affecting fencing or paths and the higher end major failures affecting paths or roads. In some zones there is potential to relocate affected assets inland, while in many zones this may not be possible and if an affected asset was to be reinstated the affected land area would require stabilisation and reinstatement.


4.5.4 Risk estimation

The risk rating for minor and major landslides derived from the COO risk matrix is presented in Table 9 - Risk to property with calculations presented in Appendix E. Where the risk rating varied between the pessimistic and 'best estimate' values, the range has been presented. Estimated risk ratings were all Moderate or higher. Where a landslide type was identified as credible within a zone, but no impact on infrastructure was considered credible a rating of Low has been applied. Where a landslide type has not been identified as credible within a zone 'n/a' appears in the table.

Zone	Minor Landslides (Danger Class B)	Major Landslides (Danger Class C)
А	М	Н
В	М	Н
С	L	n/a
D1	М	n/a
D2	М	n/a
D3	Н	Н
E	L	L
F1	H or M	Н
F2	L	n/a
G1	L	n/a
G2	L	Μ
H1	H or M	n/a
H2	Н	Н
I	L	H or M
J	L	n/a
К	n/a	n/a
L	n/a	n/a

Table 9 - Risk to property


The risk to property for Minor and Major landslides has been presented geographically in Figure 3 – Risk to Property, Minor Landslides and Figure 4 – Risk to property, Major Landslides respectively.

G:\31\30756\GIS\Maps\Working\3130756_Figure3_RiskToProperty_MinorLandslide_A3P.mxd

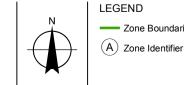
5 Church St Traralgon VIC 3844 Australia T 61 3 5136 5800 F 61 3 5136 5888 E W www.ghd.com

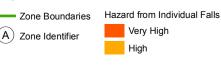
© 2016. Whilst every care has been taken to prepare this map, GHD (and DATA CUSTODIAN) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: dept of Planning, Transport and Infrastructure, Roads, 2014: GHD, Cliff Data 2014: City of Onkaparinga, Aerial Imagery, 2014. Created by:hcoles

G:\31\30756\GIS\Maps\Working\3130756_Figure4_RiskToProperty_MajorLandslide_A3P.mxd

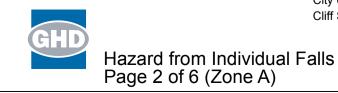
5 Church St Traralgon VIC 3844 Australia T 61 3 5136 5800 F 61 3 5136 5888 E W www.ghd.com

© 2016. Whilst every care has been taken to prepare this map, GHD (and DATA CUSTODIAN) make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: dept of Planning, Transport and Infrastructure, Roads, 2014: GHD, Cliff Data 2014: City of Onkaparinga, Aerial Imagery, 2014. Created by:hcoles





The highlighted zones indicate the extent of the assessed hazard zone along the coastline only. They do not represent the landward or seaward extent of the hazard zone. Hazard Descriptor is based on 'best estimate' probability. Refer to report text for detail.


Paper Size A3 0 20 40 80 120 160 Metres Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 54

269.000

269,000

G:\31\30756\GIS\Maps\Working\3130756_002_Hazard_IndivFalls_A3L_Rev0.mxd

268,500

© 2016. Whilst every care has been taken to prepare this map, GHD, Geoscience Australia and City of Onkaparinga make no representations or warranties about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any kind (whether in contract, tort or otherwise) for any expenses, losses, damages and/or costs (including indirect or consequential damage) which are or may be incurred by any party as a result of the map being inaccurate, incomplete or unsuitable in any way and for any reason. Data source: Department of Planning, Transport and Infrastructure, Roads and Suburb information; City of Onkaparinga, Aerial Imagery, 2014. Created by:cagilbert

haz	ard zoning (adapted from AGS	2007)
or	Individual small falls/topples	Other Minor and Major Landslides
	Number/annum/km of cliff	Annual probability of active sliding/m of cliff
	>10	10 ⁻¹
	1 to 10	10 ⁻²
	0.1 to 1	10 ⁻³ to 10 ⁻⁴
	0.01 to 0.1	10 ^{-s}
	<0.01	<10 ⁻⁶
No.	SOUTH	
	270,000)

City of Onkaparinga Cliff Stability Review

Job Number | 31-30756 Revision 0 Date

27 Apr 2016

Appendix G

						Admin	istrative						Mir	or works							Maj	or works			Do Nothir	ng
Area:	А	Port Noarlunga Witton Bluff				Cianaaa		ed retreat		nagement		ainage ovements	Davi	egetation	Classe	eprofiling		elocate structure		lised Rock acement	De	vetment		ttenuation		
Ared.	A	Port Noanunga Willon Buit	J		Insta	Signage Il or upgrade signage	Allow e vacant pu continue, purchase owned lan infrast	Allow erosion of cant public land to itinue, may require rchase of privately fenc		Provision/upgrade of fencing to control public access		Modification to stormwater management including cliff top earthworks		Slope revegetation		Flatten slopes to remove overhangs or unstable slopes		Minor realignments or relocation of infrastructure		Place rock in short segments at specific locations		ruct a rock ent along the of the cliff	Rock placement belo the high water mark te trigger breaking of large waves prior to reaching the cliff bas		No chang	ge to existing uation
Group			Criteria	Net	_	Weighted		Weighted		Weighted	_	Weighted	_	Weighted		Weighted		Weighted	_	Weighted		Weighted		Weighted	_	Weighted
Weighting (%)		Assessment criteria		weighting	Raw sco		Raw score		Raw score		Raw score		Raw sco		Raw score		Raw score		Raw scor		Raw scor		Raw score		Raw score	
	SS	Property risk - rockfall Public safety risk - rockfall	0% 100%	0% 40%	4	0 4	1	0	5	0	з	0	2	0 2	4	0	1	0	3	0	5	0	4	0 4	1	0
	ene	Property risk - minor landslide	45%	18%	1	0.45	5	2.25	1	0.45	4	1.8	2	0.9	4	1.8	5	2.25	3	1.35	4	1.8	4	1.8	1	0.45
40%	ectiv	Public safety risk - minor landslide	55%	22%		1.1	1	0.55	5	2.75	3	1.65	2	1.1	4	2.2	2	1.1	4	2.2	5	2.75	4	2.2	1	0.55
	Effe	Property risk - major landslide	45%	18%	1	0.45	5	2.25	1	0.45	4	1.8	2	0.9	4	1.8	5	2.25	3	1.35	4	1.8	4	1.8	1	0.45
		Public safety risk - major landslide	55%	22%	2	1.1	1	0.55	5	2.75	3	1.65	2	1.1	5	2.75	2	1.1	4	2.2	5	2.75	4	2.2	1	0.55
		Effectiveness Sub-total - Rockfall	100%			1.6		0.4		2		1.2		0.8		1.6		0.4		1.2		2		1.6		0.4
		Effectiveness Sub-total - Minor Landslide	100%			0.62	1	.12	1	.28		1.38		0.8		1.6		1.34		1.42		1.82		1.6		0.4
		Effectiveness Sub-total - Major Landslide	100%			0.62	1	.12	1	.28	:	1.38		0.8	1	.82		1.34		1.42		1.82		1.6		0.4
		Capital cost	70%	18%	5	3.5	3	2.1	5	3.5	4	2.8	3	2.1	2	1.4	3	2.1	3	2.1	2	1.4	2	1.4	2	1.4
25%	Cost	Maintenance cost	30%	8%	4	1.2	5	1.5	4	1.2	3	0.9	2	0.6	5	1.5	4	1.2	4	1.2	4	1.2	4	1.2	3	0.9
		Cost Sub-total	100%			1.175	(0.9	1	.175	C	0.925		0.675	0	.725	0	0.825		0.825		0.65		0.65	0	0.575
		Construction impacts	15%	2%	5	0.75	2	0.3	5	0.75	3	0.45	4	0.6	2	0.3	3	0.45	1	0.15	1	0.15	1	0.15	2	0.3
	ent	Ecological and coastal process impacts	50%	8%	1	0.5	5	2.5	3	1.5	3	1.5	4	2	5	2.5	2	1	3	1.5	1	0.5	2	1	5	2.5
15%	u u u	Visual amenity	35%	5%	2	0.7	5	1.75	1	0.35	3	1.05	5	1.75	4	1.4	2	0.7	3	1.05	2	0.7	1	0.35	5	1.75
	Enviro	Environment Sub-total	100%			0.2925	0.6	6825		0.39		0.45		0.6525).63	0	.3225		0.405		.2025	c	.225	0.	.6825
	c	Implementation timeframe	30%	5%		1.5	1	0.3	5	1.5	4	1.2	4	1.2	2	0.6	3	0.9	3	0.9	2	0.6	2	0.6	5	1.5
	itio	Monitoring and maintenance	35%	5%		1.4	5	1.75	4	1.4	3	1.05	3	1.05	4	1.4	4	1.4	4	1.4	4	1.4	4	1.4	1	0.35
15%	Opera	Expected life	35%	5%	3	1.05	5	1.75	5	1.75	2	0.7	3	1.05	4	1.4	3	1.05	3	1.05	4	1.4	4	1.4	1	0.35
	0	Operation Sub-total	100%			0.5925	0	.57	0.	6975	0	.4425		0.495		0.51	0	.5025	0	0.5025		0.51		0.51	(0.33
	>	Public perception	100%	5%	2	2	2	2	1	1	4	4	5	5	4	4	2	2	3	3	3	3	2	2	1	1
	unity																									
5%	Jm (
	E																									
	Ŭ	Community Sub-total	100%			0.1	(0.1	(0.05		0.2		0.25		0.2		0.1		0.15		0.15	0.1		(0.05
		Weighted Total - Rockfall	1	100%		3.76		.65		1.31		3.22		2.87		3.67	2.15		3.08		3.51		3.09			2.04
	м	Weighted Total - Minor Landslide		100%		2.78		.37		.59		3.40		2.87	3	8.67		3.09		3.30		3.33		3.09	:	2.04
	н	Weighted Total - Major Landslide		100%		2.78	3	.37	3	1.59	1	3.40		2.87	3	8.89		3.09		3.30		3.33		3.09	3	2.04
Notes		*Weighting for each group or criteria	Signage not being Managed retreat will									Multiple erosion gullies Slopes may be difficult Reprofiling slope may Esplanade Road set					e Road set	Assessment for structures at sea level made on the basis of protecting Pote						Potential	loss of roads	
			0.00								1						1									

obeyed and drainage paths, to revegetate due to require greater back from cliff face. against wave impacts.
 90%
 This group or criterion is of critical importance

 10%
 This group or criterion is of minor importance
 prevent loss of private and access to property and allow for may be difficult to chemistry / nature of setbacks and retreat in Any further retreat Area already protected by two sections of revetment. numerous properties works to restrict access soil, and steepness of steep slopes. May may require narrowing Revetment at base will move people away from base, attenuating over long term if * How important is this group or criterion in determining the mitigation manage at the top of the disturb established of road reserve or structure may trap them within the fall zone. option. upper slopes. erosion continues escarpment, but no vegetation and success lanes. Residential change to risk profile fo revegetation may development abutting **Raw score for each option at the base of the cliff not be as efficient and existing works in 5 This option is best for satisfying the criteria Removal of affected place so potential for This option is beter than others, but is not the best 4 infrastructure will be concern about no 3 This option is average for satisfying the criteria required action. This option is worse than others, but is not the poorest 2 Construction and 1 This option is poorest for satisfying the criteria maintenance impacts ** How this mitigation option satisfies the criteria. The options need not if erosion affects be ranked consecutively from 5 to 1 if several options are perceived as existing infrastructure. egual. A zero weighted total indicates the option is not applicable in mitigating

A zero weighted total indicates the option is not applicable in mitigating risk for the particualr identified hazard

Appendix C: Current examples of fences installed by Council.

Soil and Rock Catch Fence

City Of Onkaparinga Port Willunga Examples 21/10/20

Modern fence systems installed as part of the footpath upgrade

Advantages: Simple to build and fix Durable Allow vegetation to grow through Unsightly Large openings Can have more than 1 high strength strand Bicycle standard compliant

Soil and Rock Catch Fence

City Of Onkaparinga Port Willunga Examples 21/10/20

Modern barrier fence systems installed as part of the footpath upgrade at lookouts. Stops kids climbing.

Advantages: Simple to build Durable Allow vegetation to grow through

Disadvantages as a soil and rock catch fence:

narrow openings will not allow soil or rock material through. If hit by a soil mass will detach and the panels becomes a hazard. Not flexible/elastic but rigid and therefore will not absorb energy but detach from post when struck

Soil and Rock Catch Fence

City Of Onkaparinga Port Willunga Examples 21/10/20

Old mesh fence systems installed as part of the original footpath

Advantages: Simple to build and fix Durable Flexible when hit by rocks. Used extensive by DPTI in their road throughout the Adelaide hills as a small scale rock catch fence.

Disadvantages Visually not so pleasant Narrow openings will not allow soil or rock material through. Not to bicycle standard

